挽救 SERCA2 泵缺陷:改善 2 型糖尿病患者骨骼机械反应性的新方法

Zhifeng Yu , X. Edward Guo
{"title":"挽救 SERCA2 泵缺陷:改善 2 型糖尿病患者骨骼机械反应性的新方法","authors":"Zhifeng Yu ,&nbsp;X. Edward Guo","doi":"10.1016/j.mbm.2024.100047","DOIUrl":null,"url":null,"abstract":"<div><p>A recent study published in <em>Nature Communications</em> demonstrated that restoring SERCA2 pump deficiency can enhance bone mechano-responsiveness in type 2 diabetes (T2D) by modulating osteocyte calcium dynamics. The findings revealed that in T2D mice, the ability of the bone to respond to mechanical stress is compromised, primarily due to attenuated calcium oscillatory dynamics within osteocytes rather than in osteoblasts or osteoclasts. The underlying mechanism of this reduction in bone mechano-responsiveness in T2D was identified as a specific decrease in osteocytic SERCA2 expression mediated by PPARα. Additionally, mice overexpressing SERCA2 in osteocytes exhibited reduced deterioration of bone mechano-responsiveness induced by T2D. Collectively, this study provides mechanistic insights into T2D-induced deterioration in bone mechano-responsiveness and identifies a promising therapeutic approach to counteract T2D-associated fragility fractures.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294990702400010X/pdfft?md5=673fabd07f7fc63f32f1485c817369bc&pid=1-s2.0-S294990702400010X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Rescuing SERCA2 pump deficiency: A novel approach to improve bone mechano-responsiveness in type 2 diabetes\",\"authors\":\"Zhifeng Yu ,&nbsp;X. Edward Guo\",\"doi\":\"10.1016/j.mbm.2024.100047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A recent study published in <em>Nature Communications</em> demonstrated that restoring SERCA2 pump deficiency can enhance bone mechano-responsiveness in type 2 diabetes (T2D) by modulating osteocyte calcium dynamics. The findings revealed that in T2D mice, the ability of the bone to respond to mechanical stress is compromised, primarily due to attenuated calcium oscillatory dynamics within osteocytes rather than in osteoblasts or osteoclasts. The underlying mechanism of this reduction in bone mechano-responsiveness in T2D was identified as a specific decrease in osteocytic SERCA2 expression mediated by PPARα. Additionally, mice overexpressing SERCA2 in osteocytes exhibited reduced deterioration of bone mechano-responsiveness induced by T2D. Collectively, this study provides mechanistic insights into T2D-induced deterioration in bone mechano-responsiveness and identifies a promising therapeutic approach to counteract T2D-associated fragility fractures.</p></div>\",\"PeriodicalId\":100900,\"journal\":{\"name\":\"Mechanobiology in Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S294990702400010X/pdfft?md5=673fabd07f7fc63f32f1485c817369bc&pid=1-s2.0-S294990702400010X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanobiology in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S294990702400010X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294990702400010X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近发表在《自然-通讯》(Nature Communications)上的一项研究表明,恢复 SERCA2 泵的缺乏可通过调节骨细胞的钙动力学提高 2 型糖尿病(T2D)患者骨的机械反应能力。研究结果表明,2型糖尿病小鼠的骨骼对机械应力的反应能力受到影响,这主要是由于骨细胞内而不是成骨细胞或破骨细胞内的钙振荡动态减弱所致。研究发现,T2D 导致骨机械反应性降低的根本机制是 PPARα 介导的骨细胞 SERCA2 表达的特异性降低。此外,在骨细胞中过表达 SERCA2 的小鼠表现出的 T2D 引起的骨机械反应性恶化程度也有所降低。总之,这项研究从机理上揭示了 T2D 诱导的骨机械反应性恶化,并确定了一种很有前景的治疗方法,以应对 T2D 相关的脆性骨折。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rescuing SERCA2 pump deficiency: A novel approach to improve bone mechano-responsiveness in type 2 diabetes

A recent study published in Nature Communications demonstrated that restoring SERCA2 pump deficiency can enhance bone mechano-responsiveness in type 2 diabetes (T2D) by modulating osteocyte calcium dynamics. The findings revealed that in T2D mice, the ability of the bone to respond to mechanical stress is compromised, primarily due to attenuated calcium oscillatory dynamics within osteocytes rather than in osteoblasts or osteoclasts. The underlying mechanism of this reduction in bone mechano-responsiveness in T2D was identified as a specific decrease in osteocytic SERCA2 expression mediated by PPARα. Additionally, mice overexpressing SERCA2 in osteocytes exhibited reduced deterioration of bone mechano-responsiveness induced by T2D. Collectively, this study provides mechanistic insights into T2D-induced deterioration in bone mechano-responsiveness and identifies a promising therapeutic approach to counteract T2D-associated fragility fractures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strain and hyaluronic acid interact to regulate ovarian cancer cell proliferation, migration, and drug resistance In vivo analysis of hybrid hydrogels containing dual growth factor combinations, and skeletal stem cells under mechanical stimulation for bone repair Low-magnitude high-frequency vibration reduces prostate cancer growth and extravasation in vitro Application of biomechanics in tumor epigenetic research YAP/TAZ as mechanobiological signaling pathway in cardiovascular physiological regulation and pathogenesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1