Ihsane Kassem, El-Houssaine Ablouh, Fatima-Zahra El Bouchtaoui, Mohamed Jaouahar, Mounir El Achaby
{"title":"聚合物包膜缓释/控释颗粒肥料:基本原理和研究趋势","authors":"Ihsane Kassem, El-Houssaine Ablouh, Fatima-Zahra El Bouchtaoui, Mohamed Jaouahar, Mounir El Achaby","doi":"10.1016/j.pmatsci.2024.101269","DOIUrl":null,"url":null,"abstract":"<div><p>Synthetic fertilizers have supported the global world agriculture and food systems since 20th century, they have contributed significantly to increase soil productivity so as to achieve higher yields and ensure the world food security. However, excessive, and inappropriate use of mineral fertilizers combined with their fast dissolution nature, have shown major issues related to the environment and low nutrients use efficiency. Accordingly, it has become crucial to adopt modern technologies in order to manage nutrients supply for an optimum and effective use by the plants, while protecting the ecosystem from negative impacts. Polymer coating technology for fertilizers has shown the potential to better provide nutrients in a slow/ controlled rate for optimal crop nutrition with minimal environmental issues. In this review, we tried to establish a fundamental understanding of why and how polymer coated fertilizers (PCFs) are developed from the past to the recent trends. Telling the story of designing PCFs, we tried also to shed light on their function mechanisms as affected by many factors, their effects on the soil components, on the crops' response as well as on the environment and economic return. We aimed also in this review to deeply understand the interactions between the physicochemical properties of the polymeric coating, the fertilizer granules, the soil environment, and the crops through multidisciplinary investigation from polymer science, soil science and agronomy perspectives.</p><p>Further considerations on the challenges and perspectives for future development of fertilizers with high nutrients use efficiency were discussed in this review.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"144 ","pages":"Article 101269"},"PeriodicalIF":33.6000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymer coated slow/ controlled release granular fertilizers: Fundamentals and research trends\",\"authors\":\"Ihsane Kassem, El-Houssaine Ablouh, Fatima-Zahra El Bouchtaoui, Mohamed Jaouahar, Mounir El Achaby\",\"doi\":\"10.1016/j.pmatsci.2024.101269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Synthetic fertilizers have supported the global world agriculture and food systems since 20th century, they have contributed significantly to increase soil productivity so as to achieve higher yields and ensure the world food security. However, excessive, and inappropriate use of mineral fertilizers combined with their fast dissolution nature, have shown major issues related to the environment and low nutrients use efficiency. Accordingly, it has become crucial to adopt modern technologies in order to manage nutrients supply for an optimum and effective use by the plants, while protecting the ecosystem from negative impacts. Polymer coating technology for fertilizers has shown the potential to better provide nutrients in a slow/ controlled rate for optimal crop nutrition with minimal environmental issues. In this review, we tried to establish a fundamental understanding of why and how polymer coated fertilizers (PCFs) are developed from the past to the recent trends. Telling the story of designing PCFs, we tried also to shed light on their function mechanisms as affected by many factors, their effects on the soil components, on the crops' response as well as on the environment and economic return. We aimed also in this review to deeply understand the interactions between the physicochemical properties of the polymeric coating, the fertilizer granules, the soil environment, and the crops through multidisciplinary investigation from polymer science, soil science and agronomy perspectives.</p><p>Further considerations on the challenges and perspectives for future development of fertilizers with high nutrients use efficiency were discussed in this review.</p></div>\",\"PeriodicalId\":411,\"journal\":{\"name\":\"Progress in Materials Science\",\"volume\":\"144 \",\"pages\":\"Article 101269\"},\"PeriodicalIF\":33.6000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079642524000380\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642524000380","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Polymer coated slow/ controlled release granular fertilizers: Fundamentals and research trends
Synthetic fertilizers have supported the global world agriculture and food systems since 20th century, they have contributed significantly to increase soil productivity so as to achieve higher yields and ensure the world food security. However, excessive, and inappropriate use of mineral fertilizers combined with their fast dissolution nature, have shown major issues related to the environment and low nutrients use efficiency. Accordingly, it has become crucial to adopt modern technologies in order to manage nutrients supply for an optimum and effective use by the plants, while protecting the ecosystem from negative impacts. Polymer coating technology for fertilizers has shown the potential to better provide nutrients in a slow/ controlled rate for optimal crop nutrition with minimal environmental issues. In this review, we tried to establish a fundamental understanding of why and how polymer coated fertilizers (PCFs) are developed from the past to the recent trends. Telling the story of designing PCFs, we tried also to shed light on their function mechanisms as affected by many factors, their effects on the soil components, on the crops' response as well as on the environment and economic return. We aimed also in this review to deeply understand the interactions between the physicochemical properties of the polymeric coating, the fertilizer granules, the soil environment, and the crops through multidisciplinary investigation from polymer science, soil science and agronomy perspectives.
Further considerations on the challenges and perspectives for future development of fertilizers with high nutrients use efficiency were discussed in this review.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.