{"title":"基于微腔谐振器的超紧凑型全光学 4-2 编码器","authors":"M. Sivasindhu, P. Samundiswary","doi":"10.1007/s11107-024-01016-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, an all optical 4–2 encoder based on triangular lattice Photonic Crystal structure is proposed. The proposed structure consists of three micro-cavity resonators placed next to each other, resonates at the operating wavelength of 1550 nm to perform the encoder logical operation. The normalized output power for ON state is above 28%, and OFF state is below 0.9%. The minimum time delay and the bit rate of the proposed encoder are about 800 fs and 1.25 Tb/s, respectively. The total footprint of the proposed encoder is around 125 µm<sup>2</sup>.</p>","PeriodicalId":20057,"journal":{"name":"Photonic Network Communications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-compact all optical 4–2 encoder based on micro-cavity resonators\",\"authors\":\"M. Sivasindhu, P. Samundiswary\",\"doi\":\"10.1007/s11107-024-01016-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, an all optical 4–2 encoder based on triangular lattice Photonic Crystal structure is proposed. The proposed structure consists of three micro-cavity resonators placed next to each other, resonates at the operating wavelength of 1550 nm to perform the encoder logical operation. The normalized output power for ON state is above 28%, and OFF state is below 0.9%. The minimum time delay and the bit rate of the proposed encoder are about 800 fs and 1.25 Tb/s, respectively. The total footprint of the proposed encoder is around 125 µm<sup>2</sup>.</p>\",\"PeriodicalId\":20057,\"journal\":{\"name\":\"Photonic Network Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonic Network Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11107-024-01016-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonic Network Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11107-024-01016-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Ultra-compact all optical 4–2 encoder based on micro-cavity resonators
In this paper, an all optical 4–2 encoder based on triangular lattice Photonic Crystal structure is proposed. The proposed structure consists of three micro-cavity resonators placed next to each other, resonates at the operating wavelength of 1550 nm to perform the encoder logical operation. The normalized output power for ON state is above 28%, and OFF state is below 0.9%. The minimum time delay and the bit rate of the proposed encoder are about 800 fs and 1.25 Tb/s, respectively. The total footprint of the proposed encoder is around 125 µm2.
期刊介绍:
This journal publishes papers involving optical communication networks. Coverage includes network and system technologies; network and system architectures; network access and control; network design, planning, and operation; interworking; and application design for an optical infrastructure
This journal publishes high-quality, peer-reviewed papers presenting research results, major achievements, and trends involving all aspects of optical network communications.
Among the topics explored are transport, access, and customer premises networks; local, regional, and global networks; transoceanic and undersea networks; optical transparent networks; WDM, HWDM, and OTDM networks and more.