{"title":"具有测量误差的右删失数据的模型平均法","authors":"Zhongqi Liang, Caiya Zhang, Linjun Xu","doi":"10.1007/s10985-024-09620-3","DOIUrl":null,"url":null,"abstract":"<p>This paper studies a novel model averaging estimation issue for linear regression models when the responses are right censored and the covariates are measured with error. A novel weighted Mallows-type criterion is proposed for the considered issue by introducing multiple candidate models. The weight vector for model averaging is selected by minimizing the proposed criterion. Under some regularity conditions, the asymptotic optimality of the selected weight vector is established in terms of its ability to achieve the lowest squared loss asymptotically. Simulation results show that the proposed method is superior to the other existing related methods. A real data example is provided to supplement the actual performance.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model averaging for right censored data with measurement error\",\"authors\":\"Zhongqi Liang, Caiya Zhang, Linjun Xu\",\"doi\":\"10.1007/s10985-024-09620-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper studies a novel model averaging estimation issue for linear regression models when the responses are right censored and the covariates are measured with error. A novel weighted Mallows-type criterion is proposed for the considered issue by introducing multiple candidate models. The weight vector for model averaging is selected by minimizing the proposed criterion. Under some regularity conditions, the asymptotic optimality of the selected weight vector is established in terms of its ability to achieve the lowest squared loss asymptotically. Simulation results show that the proposed method is superior to the other existing related methods. A real data example is provided to supplement the actual performance.</p>\",\"PeriodicalId\":49908,\"journal\":{\"name\":\"Lifetime Data Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lifetime Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-024-09620-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-024-09620-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Model averaging for right censored data with measurement error
This paper studies a novel model averaging estimation issue for linear regression models when the responses are right censored and the covariates are measured with error. A novel weighted Mallows-type criterion is proposed for the considered issue by introducing multiple candidate models. The weight vector for model averaging is selected by minimizing the proposed criterion. Under some regularity conditions, the asymptotic optimality of the selected weight vector is established in terms of its ability to achieve the lowest squared loss asymptotically. Simulation results show that the proposed method is superior to the other existing related methods. A real data example is provided to supplement the actual performance.
期刊介绍:
The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.