Qi Kang, Jingxin Bao, Ran Li, Yingying Zuo, Yanxia Ye, Hua Huang
{"title":"基于数学模型的不同矿物强度分析--改良型 MPC","authors":"Qi Kang, Jingxin Bao, Ran Li, Yingying Zuo, Yanxia Ye, Hua Huang","doi":"10.1186/s40069-023-00659-4","DOIUrl":null,"url":null,"abstract":"<p>The study discussed the effects of different mineral incorporations and the curing time on the strength of modified magnesium phosphate cement (MPC) mortars through mechanical tests, mathematical model analysis and microstructure characterization. Fly ash (FA), silica fume (SF), and metakaolin (MK), which exhibit excellent durability and bonding properties, were used to modify the MPC. A quantitative relationship was established between the strength of modified MPC mortars and the mineral incorporation and curing time. First, the strength of each mineral-modified MPC mortar cured in air with different mineral incorporations and curing durations was evaluated. The strengths of MPC mortars containing 10% fly ash, 15% silica fume, and 10% metakaolin—which perform best in their incorporations—were compared to analyze the function of the three minerals. To establish the relationship between strength and mineral incorporation and curing time, three mathematical models, linear model, general nonlinear model, and data distribution shape nonlinear model (DDSNM), are commonly used for material property analysis based on statistics. DDSNM best describes the trend of strength change among the three models and the error is small for three minerals. Based on DDSNM, the influence of various minerals on the strength of MPC mortar was quantitatively evaluated by calculating the variable partial derivatives, and verified by scanning electron microscopy and X-ray diffraction. MK performs the best in improving the flexural strength performance of MPC, while SF performs the best in the compressive strength. FA-MPC has low sensitivity to dosage fluctuations and is easy to prepare.</p>","PeriodicalId":13832,"journal":{"name":"International Journal of Concrete Structures and Materials","volume":"39 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the Strength of Different Minerals-Modified MPC Based on Mathematical Models\",\"authors\":\"Qi Kang, Jingxin Bao, Ran Li, Yingying Zuo, Yanxia Ye, Hua Huang\",\"doi\":\"10.1186/s40069-023-00659-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study discussed the effects of different mineral incorporations and the curing time on the strength of modified magnesium phosphate cement (MPC) mortars through mechanical tests, mathematical model analysis and microstructure characterization. Fly ash (FA), silica fume (SF), and metakaolin (MK), which exhibit excellent durability and bonding properties, were used to modify the MPC. A quantitative relationship was established between the strength of modified MPC mortars and the mineral incorporation and curing time. First, the strength of each mineral-modified MPC mortar cured in air with different mineral incorporations and curing durations was evaluated. The strengths of MPC mortars containing 10% fly ash, 15% silica fume, and 10% metakaolin—which perform best in their incorporations—were compared to analyze the function of the three minerals. To establish the relationship between strength and mineral incorporation and curing time, three mathematical models, linear model, general nonlinear model, and data distribution shape nonlinear model (DDSNM), are commonly used for material property analysis based on statistics. DDSNM best describes the trend of strength change among the three models and the error is small for three minerals. Based on DDSNM, the influence of various minerals on the strength of MPC mortar was quantitatively evaluated by calculating the variable partial derivatives, and verified by scanning electron microscopy and X-ray diffraction. MK performs the best in improving the flexural strength performance of MPC, while SF performs the best in the compressive strength. FA-MPC has low sensitivity to dosage fluctuations and is easy to prepare.</p>\",\"PeriodicalId\":13832,\"journal\":{\"name\":\"International Journal of Concrete Structures and Materials\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Concrete Structures and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40069-023-00659-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Concrete Structures and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40069-023-00659-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Analysis of the Strength of Different Minerals-Modified MPC Based on Mathematical Models
The study discussed the effects of different mineral incorporations and the curing time on the strength of modified magnesium phosphate cement (MPC) mortars through mechanical tests, mathematical model analysis and microstructure characterization. Fly ash (FA), silica fume (SF), and metakaolin (MK), which exhibit excellent durability and bonding properties, were used to modify the MPC. A quantitative relationship was established between the strength of modified MPC mortars and the mineral incorporation and curing time. First, the strength of each mineral-modified MPC mortar cured in air with different mineral incorporations and curing durations was evaluated. The strengths of MPC mortars containing 10% fly ash, 15% silica fume, and 10% metakaolin—which perform best in their incorporations—were compared to analyze the function of the three minerals. To establish the relationship between strength and mineral incorporation and curing time, three mathematical models, linear model, general nonlinear model, and data distribution shape nonlinear model (DDSNM), are commonly used for material property analysis based on statistics. DDSNM best describes the trend of strength change among the three models and the error is small for three minerals. Based on DDSNM, the influence of various minerals on the strength of MPC mortar was quantitatively evaluated by calculating the variable partial derivatives, and verified by scanning electron microscopy and X-ray diffraction. MK performs the best in improving the flexural strength performance of MPC, while SF performs the best in the compressive strength. FA-MPC has low sensitivity to dosage fluctuations and is easy to prepare.
期刊介绍:
The International Journal of Concrete Structures and Materials (IJCSM) provides a forum targeted for engineers and scientists around the globe to present and discuss various topics related to concrete, concrete structures and other applied materials incorporating cement cementitious binder, and polymer or fiber in conjunction with concrete. These forums give participants an opportunity to contribute their knowledge for the advancement of society. Topics include, but are not limited to, research results on
Properties and performance of concrete and concrete structures
Advanced and improved experimental techniques
Latest modelling methods
Possible improvement and enhancement of concrete properties
Structural and microstructural characterization
Concrete applications
Fiber reinforced concrete technology
Concrete waste management.