{"title":"Circ_0020887 沉默以 MiR-370-3p/CYP1B1 依赖性方式对抗缺氧诱导的心肌细胞损伤。","authors":"Huiqin Chen, Zhendong Cheng, Meiai Wang, Qian Huang, Dandan Zheng, Qiuhong Huang, Kefeng Cai","doi":"10.1536/ihj.23-325","DOIUrl":null,"url":null,"abstract":"<p><p>Targeting circular RNA has been a novel approach to preventing and limiting acute myocardial infarction (AMI). Here, we planned to investigate the role and mechanism of circ_0020887 in AMI progression.Hypoxic injury in human cardiomyocytes (AC16) was measured using cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, flow cytometry, and colorimetric assay kits. RNA and protein expressions were determined using real-time quantitative PCR and western blotting. Direct interplay between RNAs was determined using dual-luciferase reporter, RNA pull-down, and RIP assays.In the plasma and hypoxia-induced AC16 cells of patients with AMI, circ_0020887 and miR-370-3p were upregulated and downregulated, respectively, concomitant with the upregulation of cytochrome P450 1B1 (CYP1B1). Circ_0020887 interference could inhibit hypoxia-induced AC16 cell apoptosis, oxidative stress, and inflammatory response. Circ_0020887 could sponge miR-370-3p, and miR-370-3p could target CYP1B1. The inhibition effect of circ_0020887 knockdown on hypoxia-induced AC16 cell injury could be reversed by the miR-370-3p inhibitor. Besides, CYP1B1 overexpression also overturned the suppressive effect of miR-370-3p on hypoxia-induced AC16 cell apoptosis, oxidative stress, and inflammatory response.In conclusion, circ_0020887 regulated the miR-370-3p/CYP1B1 axis to regulate hypoxia-induced cardiomyocyte injury, confirming that circ_0020887 might promote cardiomyocyte injury.</p>","PeriodicalId":13711,"journal":{"name":"International heart journal","volume":" ","pages":"308-317"},"PeriodicalIF":1.2000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circ_0020887 Silencing Combats Hypoxic-Induced Cardiomyocyte Injury in an MiR-370-3p/CYP1B1-Dependent Manner.\",\"authors\":\"Huiqin Chen, Zhendong Cheng, Meiai Wang, Qian Huang, Dandan Zheng, Qiuhong Huang, Kefeng Cai\",\"doi\":\"10.1536/ihj.23-325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Targeting circular RNA has been a novel approach to preventing and limiting acute myocardial infarction (AMI). Here, we planned to investigate the role and mechanism of circ_0020887 in AMI progression.Hypoxic injury in human cardiomyocytes (AC16) was measured using cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, flow cytometry, and colorimetric assay kits. RNA and protein expressions were determined using real-time quantitative PCR and western blotting. Direct interplay between RNAs was determined using dual-luciferase reporter, RNA pull-down, and RIP assays.In the plasma and hypoxia-induced AC16 cells of patients with AMI, circ_0020887 and miR-370-3p were upregulated and downregulated, respectively, concomitant with the upregulation of cytochrome P450 1B1 (CYP1B1). Circ_0020887 interference could inhibit hypoxia-induced AC16 cell apoptosis, oxidative stress, and inflammatory response. Circ_0020887 could sponge miR-370-3p, and miR-370-3p could target CYP1B1. The inhibition effect of circ_0020887 knockdown on hypoxia-induced AC16 cell injury could be reversed by the miR-370-3p inhibitor. Besides, CYP1B1 overexpression also overturned the suppressive effect of miR-370-3p on hypoxia-induced AC16 cell apoptosis, oxidative stress, and inflammatory response.In conclusion, circ_0020887 regulated the miR-370-3p/CYP1B1 axis to regulate hypoxia-induced cardiomyocyte injury, confirming that circ_0020887 might promote cardiomyocyte injury.</p>\",\"PeriodicalId\":13711,\"journal\":{\"name\":\"International heart journal\",\"volume\":\" \",\"pages\":\"308-317\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International heart journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1536/ihj.23-325\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International heart journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1536/ihj.23-325","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Circ_0020887 Silencing Combats Hypoxic-Induced Cardiomyocyte Injury in an MiR-370-3p/CYP1B1-Dependent Manner.
Targeting circular RNA has been a novel approach to preventing and limiting acute myocardial infarction (AMI). Here, we planned to investigate the role and mechanism of circ_0020887 in AMI progression.Hypoxic injury in human cardiomyocytes (AC16) was measured using cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, flow cytometry, and colorimetric assay kits. RNA and protein expressions were determined using real-time quantitative PCR and western blotting. Direct interplay between RNAs was determined using dual-luciferase reporter, RNA pull-down, and RIP assays.In the plasma and hypoxia-induced AC16 cells of patients with AMI, circ_0020887 and miR-370-3p were upregulated and downregulated, respectively, concomitant with the upregulation of cytochrome P450 1B1 (CYP1B1). Circ_0020887 interference could inhibit hypoxia-induced AC16 cell apoptosis, oxidative stress, and inflammatory response. Circ_0020887 could sponge miR-370-3p, and miR-370-3p could target CYP1B1. The inhibition effect of circ_0020887 knockdown on hypoxia-induced AC16 cell injury could be reversed by the miR-370-3p inhibitor. Besides, CYP1B1 overexpression also overturned the suppressive effect of miR-370-3p on hypoxia-induced AC16 cell apoptosis, oxidative stress, and inflammatory response.In conclusion, circ_0020887 regulated the miR-370-3p/CYP1B1 axis to regulate hypoxia-induced cardiomyocyte injury, confirming that circ_0020887 might promote cardiomyocyte injury.
期刊介绍:
Authors of research articles should disclose at the time of submission any financial arrangement they may have with a company whose product figures prominently in the submitted manuscript or with a company making a competing product. Such information will be held in confidence while the paper is under review and will not influence the editorial decision, but if the article is accepted for publication, the editors will usually discuss with the authors the manner in which such information is to be communicated to the reader.