{"title":"丹参酮 IIA 抗脑缺血中风和缺血再灌注损伤:现有文献综述。","authors":"Reza Arefnezhad, Alireza Nejabat, Fatemeh Behjati, Mona Torkamanche, Hooman Zarei, Motahhareh Yekkehbash, Fatemeh Afsharmanesh, Zahra Niknam, Tannaz Jamialahmadi, Amirhossein Sahebkar","doi":"10.2174/0113895575299721240227070032","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke is a well-known neurological disorder that carries significant morbidity and mortality rates worldwide. Cerebral Ischemic Stroke (CIS), the most common subtype of stroke, occurs when thrombosis or emboli form elsewhere in the body and travel to the brain, leading to reduced blood perfusion. Cerebral Ischemia/Reperfusion Injury (CIRI) is a common complication of CIS and arises when blood flow is rapidly restored to the brain tissue after a period of ischemia. The therapeutic approaches currently recognized for CIS, such as thrombolysis and thrombectomy, have notable side effects that limit their clinical application. Recently, there has been growing interest among researchers in exploring the potential of herbal agents for treating various disorders and malignancies. One such herbal agent with medicinal applications is tanshinone IIA, an active diterpene quinone extracted from <i>Salvia miltiorrhiza Bunge</i>. Tanshinone IIA has shown several pharmacological benefits, including anti-inflammatory, antioxidant, anti-apoptotic, and neuroprotective properties. Multiple studies have indicated the protective role of tanshinone IIA in CIS and CIRI. This literature review aims to summarize the current findings regarding the molecular mechanisms through which this herbal compound improves CIS and CIRI.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tanshinone IIA Against Cerebral Ischemic Stroke and Ischemia- Reperfusion Injury: A Review of the Current Documents.\",\"authors\":\"Reza Arefnezhad, Alireza Nejabat, Fatemeh Behjati, Mona Torkamanche, Hooman Zarei, Motahhareh Yekkehbash, Fatemeh Afsharmanesh, Zahra Niknam, Tannaz Jamialahmadi, Amirhossein Sahebkar\",\"doi\":\"10.2174/0113895575299721240227070032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stroke is a well-known neurological disorder that carries significant morbidity and mortality rates worldwide. Cerebral Ischemic Stroke (CIS), the most common subtype of stroke, occurs when thrombosis or emboli form elsewhere in the body and travel to the brain, leading to reduced blood perfusion. Cerebral Ischemia/Reperfusion Injury (CIRI) is a common complication of CIS and arises when blood flow is rapidly restored to the brain tissue after a period of ischemia. The therapeutic approaches currently recognized for CIS, such as thrombolysis and thrombectomy, have notable side effects that limit their clinical application. Recently, there has been growing interest among researchers in exploring the potential of herbal agents for treating various disorders and malignancies. One such herbal agent with medicinal applications is tanshinone IIA, an active diterpene quinone extracted from <i>Salvia miltiorrhiza Bunge</i>. Tanshinone IIA has shown several pharmacological benefits, including anti-inflammatory, antioxidant, anti-apoptotic, and neuroprotective properties. Multiple studies have indicated the protective role of tanshinone IIA in CIS and CIRI. This literature review aims to summarize the current findings regarding the molecular mechanisms through which this herbal compound improves CIS and CIRI.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113895575299721240227070032\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113895575299721240227070032","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Tanshinone IIA Against Cerebral Ischemic Stroke and Ischemia- Reperfusion Injury: A Review of the Current Documents.
Stroke is a well-known neurological disorder that carries significant morbidity and mortality rates worldwide. Cerebral Ischemic Stroke (CIS), the most common subtype of stroke, occurs when thrombosis or emboli form elsewhere in the body and travel to the brain, leading to reduced blood perfusion. Cerebral Ischemia/Reperfusion Injury (CIRI) is a common complication of CIS and arises when blood flow is rapidly restored to the brain tissue after a period of ischemia. The therapeutic approaches currently recognized for CIS, such as thrombolysis and thrombectomy, have notable side effects that limit their clinical application. Recently, there has been growing interest among researchers in exploring the potential of herbal agents for treating various disorders and malignancies. One such herbal agent with medicinal applications is tanshinone IIA, an active diterpene quinone extracted from Salvia miltiorrhiza Bunge. Tanshinone IIA has shown several pharmacological benefits, including anti-inflammatory, antioxidant, anti-apoptotic, and neuroprotective properties. Multiple studies have indicated the protective role of tanshinone IIA in CIS and CIRI. This literature review aims to summarize the current findings regarding the molecular mechanisms through which this herbal compound improves CIS and CIRI.