{"title":"肠道神经系统条纹图案与疾病:尚未探索的病理生理学。","authors":"Lori B. Dershowitz , Julia A. Kaltschmidt","doi":"10.1016/j.jcmgh.2024.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>The enteric nervous system (ENS) controls gastrointestinal (GI) motility, and defects in ENS development underlie pediatric GI motility disorders. In disorders such as Hirschsprung’s disease (HSCR), pediatric intestinal pseudo-obstruction (PIPO), and intestinal neuronal dysplasia type B (INDB), ENS structure is altered with noted decreased neuronal density in HSCR and reports of increased neuronal density in PIPO and INDB. The developmental origin of these structural deficits is not fully understood. Here, we review the current understanding of ENS development and pediatric GI motility disorders incorporating new data on ENS structure. In particular, emerging evidence demonstrates that enteric neurons are patterned into circumferential stripes along the longitudinal axis of the intestine during mouse and human development. This novel understanding of ENS structure proposes new questions about the pathophysiology of pediatric GI motility disorders. If the ENS is organized into stripes, could the observed changes in enteric neuron density in HSCR, PIPO, and INDB represent differences in the distribution of enteric neuronal stripes? We review mechanisms of striped patterning from other biological systems and propose how defects in striped ENS patterning could explain structural deficits observed in pediatric GI motility disorders.</p></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X24000560/pdfft?md5=cf202a674057981018c678e8581f1c1d&pid=1-s2.0-S2352345X24000560-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enteric Nervous System Striped Patterning and Disease: Unexplored Pathophysiology\",\"authors\":\"Lori B. Dershowitz , Julia A. Kaltschmidt\",\"doi\":\"10.1016/j.jcmgh.2024.03.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The enteric nervous system (ENS) controls gastrointestinal (GI) motility, and defects in ENS development underlie pediatric GI motility disorders. In disorders such as Hirschsprung’s disease (HSCR), pediatric intestinal pseudo-obstruction (PIPO), and intestinal neuronal dysplasia type B (INDB), ENS structure is altered with noted decreased neuronal density in HSCR and reports of increased neuronal density in PIPO and INDB. The developmental origin of these structural deficits is not fully understood. Here, we review the current understanding of ENS development and pediatric GI motility disorders incorporating new data on ENS structure. In particular, emerging evidence demonstrates that enteric neurons are patterned into circumferential stripes along the longitudinal axis of the intestine during mouse and human development. This novel understanding of ENS structure proposes new questions about the pathophysiology of pediatric GI motility disorders. If the ENS is organized into stripes, could the observed changes in enteric neuron density in HSCR, PIPO, and INDB represent differences in the distribution of enteric neuronal stripes? We review mechanisms of striped patterning from other biological systems and propose how defects in striped ENS patterning could explain structural deficits observed in pediatric GI motility disorders.</p></div>\",\"PeriodicalId\":55974,\"journal\":{\"name\":\"Cellular and Molecular Gastroenterology and Hepatology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352345X24000560/pdfft?md5=cf202a674057981018c678e8581f1c1d&pid=1-s2.0-S2352345X24000560-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and Molecular Gastroenterology and Hepatology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352345X24000560\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Gastroenterology and Hepatology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352345X24000560","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Enteric Nervous System Striped Patterning and Disease: Unexplored Pathophysiology
The enteric nervous system (ENS) controls gastrointestinal (GI) motility, and defects in ENS development underlie pediatric GI motility disorders. In disorders such as Hirschsprung’s disease (HSCR), pediatric intestinal pseudo-obstruction (PIPO), and intestinal neuronal dysplasia type B (INDB), ENS structure is altered with noted decreased neuronal density in HSCR and reports of increased neuronal density in PIPO and INDB. The developmental origin of these structural deficits is not fully understood. Here, we review the current understanding of ENS development and pediatric GI motility disorders incorporating new data on ENS structure. In particular, emerging evidence demonstrates that enteric neurons are patterned into circumferential stripes along the longitudinal axis of the intestine during mouse and human development. This novel understanding of ENS structure proposes new questions about the pathophysiology of pediatric GI motility disorders. If the ENS is organized into stripes, could the observed changes in enteric neuron density in HSCR, PIPO, and INDB represent differences in the distribution of enteric neuronal stripes? We review mechanisms of striped patterning from other biological systems and propose how defects in striped ENS patterning could explain structural deficits observed in pediatric GI motility disorders.
期刊介绍:
"Cell and Molecular Gastroenterology and Hepatology (CMGH)" is a journal dedicated to advancing the understanding of digestive biology through impactful research that spans the spectrum of normal gastrointestinal, hepatic, and pancreatic functions, as well as their pathologies. The journal's mission is to publish high-quality, hypothesis-driven studies that offer mechanistic novelty and are methodologically robust, covering a wide range of themes in gastroenterology, hepatology, and pancreatology.
CMGH reports on the latest scientific advances in cell biology, immunology, physiology, microbiology, genetics, and neurobiology related to gastrointestinal, hepatobiliary, and pancreatic health and disease. The research published in CMGH is designed to address significant questions in the field, utilizing a variety of experimental approaches, including in vitro models, patient-derived tissues or cells, and animal models. This multifaceted approach enables the journal to contribute to both fundamental discoveries and their translation into clinical applications, ultimately aiming to improve patient care and treatment outcomes in digestive health.