Alejandra López-Arredondo , José A Cruz-Cardenas , Jorge A Cázares-Preciado , Nicholas E Timmins , Marion EG Brunck
{"title":"中性粒细胞,一个新兴的治疗平台","authors":"Alejandra López-Arredondo , José A Cruz-Cardenas , Jorge A Cázares-Preciado , Nicholas E Timmins , Marion EG Brunck","doi":"10.1016/j.copbio.2024.103106","DOIUrl":null,"url":null,"abstract":"<div><p>Neutrophils possess unique characteristics that render them indispensable to health, and patients with irregular neutrophil counts or functions suffer from increased morbidity and mortality. As neutrophils are short-lived postmitotic cells, genetic aberrations cannot be corrected directly in neutrophils and must be targeted in their progenitors. Neutrophils are increasingly being contemplated for a range of therapeutic applications, including restoration or modulation of immune function and targeting of solid tumors. This review addresses the state-of-the-art in neutrophil transfusions and their possible applications for infectious disease prevention and treatment. It offers a landscape of the most recent gene therapy approaches to address neutrophil-related genetic diseases. We also discuss how ongoing research could broaden the applicability of neutrophil-based therapies to solid cancer treatments and beyond.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"87 ","pages":"Article 103106"},"PeriodicalIF":7.1000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0958166924000429/pdfft?md5=bd2a1522a88b66c9562b8ac59fcce7f4&pid=1-s2.0-S0958166924000429-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Neutrophils, an emerging new therapeutic platform\",\"authors\":\"Alejandra López-Arredondo , José A Cruz-Cardenas , Jorge A Cázares-Preciado , Nicholas E Timmins , Marion EG Brunck\",\"doi\":\"10.1016/j.copbio.2024.103106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neutrophils possess unique characteristics that render them indispensable to health, and patients with irregular neutrophil counts or functions suffer from increased morbidity and mortality. As neutrophils are short-lived postmitotic cells, genetic aberrations cannot be corrected directly in neutrophils and must be targeted in their progenitors. Neutrophils are increasingly being contemplated for a range of therapeutic applications, including restoration or modulation of immune function and targeting of solid tumors. This review addresses the state-of-the-art in neutrophil transfusions and their possible applications for infectious disease prevention and treatment. It offers a landscape of the most recent gene therapy approaches to address neutrophil-related genetic diseases. We also discuss how ongoing research could broaden the applicability of neutrophil-based therapies to solid cancer treatments and beyond.</p></div>\",\"PeriodicalId\":10833,\"journal\":{\"name\":\"Current opinion in biotechnology\",\"volume\":\"87 \",\"pages\":\"Article 103106\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0958166924000429/pdfft?md5=bd2a1522a88b66c9562b8ac59fcce7f4&pid=1-s2.0-S0958166924000429-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0958166924000429\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166924000429","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Neutrophils possess unique characteristics that render them indispensable to health, and patients with irregular neutrophil counts or functions suffer from increased morbidity and mortality. As neutrophils are short-lived postmitotic cells, genetic aberrations cannot be corrected directly in neutrophils and must be targeted in their progenitors. Neutrophils are increasingly being contemplated for a range of therapeutic applications, including restoration or modulation of immune function and targeting of solid tumors. This review addresses the state-of-the-art in neutrophil transfusions and their possible applications for infectious disease prevention and treatment. It offers a landscape of the most recent gene therapy approaches to address neutrophil-related genetic diseases. We also discuss how ongoing research could broaden the applicability of neutrophil-based therapies to solid cancer treatments and beyond.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.