Jiancong Ye, Mengxuan Wang, Junpei Zhong, Hongjie Jiang
{"title":"家用智能环境中的设备和学习技术综述","authors":"Jiancong Ye, Mengxuan Wang, Junpei Zhong, Hongjie Jiang","doi":"10.1007/s12652-024-04759-1","DOIUrl":null,"url":null,"abstract":"<p>With the rapid development and wide proliferation of sensor devices and the Internet of Things (IoT), machine learning algorithms processing and analysing one or more modalities of sensory signals have become an active research field given its numerous applications, particularly in the domestic intelligent environment (DIE). In the past decades, the research on sensing and interactive devices of DIE and deep learning (DL) based methods have become strikingly popular. Several missions, such as the pro- cessing and analysis of sensing signals related to domestic instruments and the control of certain devices to act upon the results, comprise the main working targets in DIE. The goal of this review is to provide a brief overview of the aforementioned sensors, their related DL algorithms and their applications. To comprehend the ideas behind the use of various devices found in domestic intelligent instruments, we first summarize the available information. Then, to quantify and adapt the residents’ knowledge of the household environment, we review data-driven learning techniques based on the aforementioned sensor-based devices and introduce robotic applications that provide helpers and action outputs in the environment. Finally, we investigate the commonly utilized datasets relevant to DIE and human activ- ity recognition (HAR) and explore the challenges and prospects of their applications in the DIE field.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on devices and learning techniques in domestic intelligent environment\",\"authors\":\"Jiancong Ye, Mengxuan Wang, Junpei Zhong, Hongjie Jiang\",\"doi\":\"10.1007/s12652-024-04759-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the rapid development and wide proliferation of sensor devices and the Internet of Things (IoT), machine learning algorithms processing and analysing one or more modalities of sensory signals have become an active research field given its numerous applications, particularly in the domestic intelligent environment (DIE). In the past decades, the research on sensing and interactive devices of DIE and deep learning (DL) based methods have become strikingly popular. Several missions, such as the pro- cessing and analysis of sensing signals related to domestic instruments and the control of certain devices to act upon the results, comprise the main working targets in DIE. The goal of this review is to provide a brief overview of the aforementioned sensors, their related DL algorithms and their applications. To comprehend the ideas behind the use of various devices found in domestic intelligent instruments, we first summarize the available information. Then, to quantify and adapt the residents’ knowledge of the household environment, we review data-driven learning techniques based on the aforementioned sensor-based devices and introduce robotic applications that provide helpers and action outputs in the environment. Finally, we investigate the commonly utilized datasets relevant to DIE and human activ- ity recognition (HAR) and explore the challenges and prospects of their applications in the DIE field.</p>\",\"PeriodicalId\":14959,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Humanized Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Humanized Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12652-024-04759-1\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Humanized Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12652-024-04759-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
摘要
随着传感设备和物联网(IoT)的快速发展和广泛普及,处理和分析一种或多种模式传感信号的机器学习算法已成为一个活跃的研究领域,因为它应用广泛,尤其是在家庭智能环境(DIE)中。在过去的几十年里,有关 DIE 的传感和交互设备以及基于深度学习(DL)方法的研究已变得非常流行。一些任务,如采集和分析与家用仪器相关的传感信号,以及控制某些设备根据结果采取行动,构成了 DIE 的主要工作目标。本综述旨在简要介绍上述传感器、相关的数字线路算法及其应用。为了理解家用智能仪器中各种设备的使用理念,我们首先总结了现有的信息。然后,为了量化和调整居民对家庭环境的认识,我们回顾了基于上述传感器设备的数据驱动学习技术,并介绍了在环境中提供助手和行动输出的机器人应用。最后,我们研究了与 DIE 和人类活动识别(HAR)相关的常用数据集,并探讨了其在 DIE 领域应用的挑战和前景。
A review on devices and learning techniques in domestic intelligent environment
With the rapid development and wide proliferation of sensor devices and the Internet of Things (IoT), machine learning algorithms processing and analysing one or more modalities of sensory signals have become an active research field given its numerous applications, particularly in the domestic intelligent environment (DIE). In the past decades, the research on sensing and interactive devices of DIE and deep learning (DL) based methods have become strikingly popular. Several missions, such as the pro- cessing and analysis of sensing signals related to domestic instruments and the control of certain devices to act upon the results, comprise the main working targets in DIE. The goal of this review is to provide a brief overview of the aforementioned sensors, their related DL algorithms and their applications. To comprehend the ideas behind the use of various devices found in domestic intelligent instruments, we first summarize the available information. Then, to quantify and adapt the residents’ knowledge of the household environment, we review data-driven learning techniques based on the aforementioned sensor-based devices and introduce robotic applications that provide helpers and action outputs in the environment. Finally, we investigate the commonly utilized datasets relevant to DIE and human activ- ity recognition (HAR) and explore the challenges and prospects of their applications in the DIE field.
期刊介绍:
The purpose of JAIHC is to provide a high profile, leading edge forum for academics, industrial professionals, educators and policy makers involved in the field to contribute, to disseminate the most innovative researches and developments of all aspects of ambient intelligence and humanized computing, such as intelligent/smart objects, environments/spaces, and systems. The journal discusses various technical, safety, personal, social, physical, political, artistic and economic issues. The research topics covered by the journal are (but not limited to):
Pervasive/Ubiquitous Computing and Applications
Cognitive wireless sensor network
Embedded Systems and Software
Mobile Computing and Wireless Communications
Next Generation Multimedia Systems
Security, Privacy and Trust
Service and Semantic Computing
Advanced Networking Architectures
Dependable, Reliable and Autonomic Computing
Embedded Smart Agents
Context awareness, social sensing and inference
Multi modal interaction design
Ergonomics and product prototyping
Intelligent and self-organizing transportation networks & services
Healthcare Systems
Virtual Humans & Virtual Worlds
Wearables sensors and actuators