从反向散射粒子光谱确定离子-固体相互作用势

IF 0.8 4区 物理与天体物理 Q4 PHYSICS, APPLIED Technical Physics Letters Pub Date : 2024-03-13 DOI:10.1134/s1063785023900030
P. Yu. Babenko, A. N. Zinoviev, V. S. Mikhailov, D. S. Tensin, A. P. Shergin
{"title":"从反向散射粒子光谱确定离子-固体相互作用势","authors":"P. Yu. Babenko, A. N. Zinoviev, V. S. Mikhailov, D. S. Tensin, A. P. Shergin","doi":"10.1134/s1063785023900030","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The values of the atomic particle–solid potential were obtained for the first time from experimental data on the energy spectra and angular dependences of backscattered particles. The proposed procedure for determining the potential has never been applied previously. It is shown that the obtained data do not depend on the potential approximation used. The ion–solid interaction potential differs markedly from the potential describing collisions in the gas phase. The screening constant increases by 10–15%. The increase in screening is due to an increase in the density of the electron gas in the region between the incident particle and scattering center.</p>","PeriodicalId":784,"journal":{"name":"Technical Physics Letters","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Ion–Solid Interaction Potential Determination from the Backscattered Particles Spectra\",\"authors\":\"P. Yu. Babenko, A. N. Zinoviev, V. S. Mikhailov, D. S. Tensin, A. P. Shergin\",\"doi\":\"10.1134/s1063785023900030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The values of the atomic particle–solid potential were obtained for the first time from experimental data on the energy spectra and angular dependences of backscattered particles. The proposed procedure for determining the potential has never been applied previously. It is shown that the obtained data do not depend on the potential approximation used. The ion–solid interaction potential differs markedly from the potential describing collisions in the gas phase. The screening constant increases by 10–15%. The increase in screening is due to an increase in the density of the electron gas in the region between the incident particle and scattering center.</p>\",\"PeriodicalId\":784,\"journal\":{\"name\":\"Technical Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s1063785023900030\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063785023900030","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 首次从反向散射粒子的能谱和角度相关性的实验数据中获得了原子粒子-固体势能值。所提出的确定电势的程序以前从未应用过。结果表明,所获得的数据与所使用的电势近似值无关。离子-固体相互作用势与描述气相碰撞的势明显不同。筛选常数增加了 10-15%。屏蔽增加的原因是入射粒子和散射中心之间区域的电子气体密度增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Ion–Solid Interaction Potential Determination from the Backscattered Particles Spectra

Abstract

The values of the atomic particle–solid potential were obtained for the first time from experimental data on the energy spectra and angular dependences of backscattered particles. The proposed procedure for determining the potential has never been applied previously. It is shown that the obtained data do not depend on the potential approximation used. The ion–solid interaction potential differs markedly from the potential describing collisions in the gas phase. The screening constant increases by 10–15%. The increase in screening is due to an increase in the density of the electron gas in the region between the incident particle and scattering center.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Technical Physics Letters
Technical Physics Letters 物理-物理:应用
CiteScore
1.50
自引率
0.00%
发文量
44
审稿时长
2-4 weeks
期刊介绍: Technical Physics Letters is a companion journal to Technical Physics and offers rapid publication of developments in theoretical and experimental physics with potential technological applications. Recent emphasis has included many papers on gas lasers and on lasing in semiconductors, as well as many reports on high Tc superconductivity. The excellent coverage of plasma physics seen in the parent journal, Technical Physics, is also present here with quick communication of developments in theoretical and experimental work in all fields with probable technical applications. Topics covered are basic and applied physics; plasma physics; solid state physics; physical electronics; accelerators; microwave electron devices; holography.
期刊最新文献
A New Approach to the Brachistochrone Problem with Allowance for Dry Friction Bifurcation Analysis of Electrodynamic Systems Containing Nonlinear Semiconductor Microstructures with Negative Differential Conductivity Computational Modeling of the Scenario of Resumption of Covid-19 Waves under Pulse Evolution in New Omicron Lines A Hardware–Software Complex for Diagnostics of a Human Being’s Psychophysiological State during the Solution of Cognitive Tasks Effect of an External Electric Field on the Intracenter Optical Transitions in Quasi-Zero-Dimensional Semiconductor Structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1