基于参数灵活的广义斜投影算子的短波雷达波束锐化方法

IF 1.4 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Radar Sonar and Navigation Pub Date : 2024-03-12 DOI:10.1049/rsn2.12551
Xingpeng Mao, Ju Li, Heyue Huang, Yiming Wang, Junjie Lang
{"title":"基于参数灵活的广义斜投影算子的短波雷达波束锐化方法","authors":"Xingpeng Mao,&nbsp;Ju Li,&nbsp;Heyue Huang,&nbsp;Yiming Wang,&nbsp;Junjie Lang","doi":"10.1049/rsn2.12551","DOIUrl":null,"url":null,"abstract":"<p>Beamforming is an effective way of resolving target direction and anti-jamming in short wave (SW) radar systems. In conventional beamforming (CBF) at a certain frequency, to get high resolution, the array aperture should be increased, and this is often not allowed in practical applications. A new narrow beam forming (NBF) method for beam sharpening based on the generalised oblique projection (GOP) filter with a flexible parameter is proposed. This method uses a GOP filter bank to form deep nulls in the undesired azimuth range on the pattern and utilises the logic product process to synthesise the GOP filters’ outputs and thus obtains a narrow beam. Compared to traditional beamforming methods, the result of NBF has the characteristics of narrower beam width and bigger side lobe suppression ratio (SLSR). Especially, a narrower beam can be obtained in the case of a small array aperture, which is valuable for practical applications. Experimental results of the range-Doppler spectrum of short wave radar show that this narrow beam forming method can achieve super resolution of targets within a wide beam and greatly suppress clutter. Therefore, NBF can improve the azimuth resolution and achieve interference suppression in a conventional beam.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"18 7","pages":"1132-1144"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12551","citationCount":"0","resultStr":"{\"title\":\"A short wave radar beam sharpening method based on generalised oblique projection operator with flexible parameter\",\"authors\":\"Xingpeng Mao,&nbsp;Ju Li,&nbsp;Heyue Huang,&nbsp;Yiming Wang,&nbsp;Junjie Lang\",\"doi\":\"10.1049/rsn2.12551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Beamforming is an effective way of resolving target direction and anti-jamming in short wave (SW) radar systems. In conventional beamforming (CBF) at a certain frequency, to get high resolution, the array aperture should be increased, and this is often not allowed in practical applications. A new narrow beam forming (NBF) method for beam sharpening based on the generalised oblique projection (GOP) filter with a flexible parameter is proposed. This method uses a GOP filter bank to form deep nulls in the undesired azimuth range on the pattern and utilises the logic product process to synthesise the GOP filters’ outputs and thus obtains a narrow beam. Compared to traditional beamforming methods, the result of NBF has the characteristics of narrower beam width and bigger side lobe suppression ratio (SLSR). Especially, a narrower beam can be obtained in the case of a small array aperture, which is valuable for practical applications. Experimental results of the range-Doppler spectrum of short wave radar show that this narrow beam forming method can achieve super resolution of targets within a wide beam and greatly suppress clutter. Therefore, NBF can improve the azimuth resolution and achieve interference suppression in a conventional beam.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"18 7\",\"pages\":\"1132-1144\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12551\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12551\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12551","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

波束成形是短波(SW)雷达系统辨别目标方向和抗干扰的有效方法。在一定频率下的传统波束成形(CBF)中,要获得高分辨率,就必须增大阵列孔径,而这在实际应用中往往是不允许的。本文提出了一种基于广义斜投影(GOP)滤波器的新型窄波束形成(NBF)波束锐化方法,该方法具有灵活的参数。该方法使用 GOP 滤波器组在图案上不希望的方位角范围内形成深空,并利用逻辑积过程合成 GOP 滤波器的输出,从而获得窄波束。与传统波束成形方法相比,NBF 的结果具有波束宽度更窄、侧波抑制比(SLSR)更大的特点。特别是在阵列孔径较小的情况下,可以获得更窄的波束,这在实际应用中非常有价值。短波雷达测距-多普勒频谱的实验结果表明,这种窄波束形成方法可以实现宽波束内目标的超分辨率,并极大地抑制杂波。因此,窄波束形成法可以提高方位分辨率,实现常规波束的干扰抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A short wave radar beam sharpening method based on generalised oblique projection operator with flexible parameter

Beamforming is an effective way of resolving target direction and anti-jamming in short wave (SW) radar systems. In conventional beamforming (CBF) at a certain frequency, to get high resolution, the array aperture should be increased, and this is often not allowed in practical applications. A new narrow beam forming (NBF) method for beam sharpening based on the generalised oblique projection (GOP) filter with a flexible parameter is proposed. This method uses a GOP filter bank to form deep nulls in the undesired azimuth range on the pattern and utilises the logic product process to synthesise the GOP filters’ outputs and thus obtains a narrow beam. Compared to traditional beamforming methods, the result of NBF has the characteristics of narrower beam width and bigger side lobe suppression ratio (SLSR). Especially, a narrower beam can be obtained in the case of a small array aperture, which is valuable for practical applications. Experimental results of the range-Doppler spectrum of short wave radar show that this narrow beam forming method can achieve super resolution of targets within a wide beam and greatly suppress clutter. Therefore, NBF can improve the azimuth resolution and achieve interference suppression in a conventional beam.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
期刊最新文献
Matched cross-spectrum phase processing for source depth estimation in deep water Development of a reliable adaptive estimation approach for a low-cost attitude and heading reference system Availability evaluation and optimisation of advanced receiver autonomous integrity monitoring fault detection and exclusion considering temporal correlations Multi-agent multi-dimensional joint optimisation of jamming decision-making against multi-functional radar Active reconfigurable intelligent surface-aided multiple-input-multiple-output radar detection in the presence of clutter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1