由阀基金属复合浓缩合金热生长而成的新型熵稳定氧化物涂层

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Pub Date : 2024-05-01 DOI:10.1016/j.mattod.2024.02.005
Meifeng Li, Haofei Sun, Xuehai Tan, Hao Zhang, Jing Liu
{"title":"由阀基金属复合浓缩合金热生长而成的新型熵稳定氧化物涂层","authors":"Meifeng Li,&nbsp;Haofei Sun,&nbsp;Xuehai Tan,&nbsp;Hao Zhang,&nbsp;Jing Liu","doi":"10.1016/j.mattod.2024.02.005","DOIUrl":null,"url":null,"abstract":"<div><p>The enhanced compositional flexibility of complex concentrated materials, which can incorporate multiple-principal elements, provides the opportunity to explore a wider range of compositions and unconventional properties in multifunctional materials. Complex concentrated oxides (CCOs) have demonstrated attractive functionalities in energy storage and catalysis applications, motivating the expansion of the boundaries of CCOs with accessible compositions and unique properties. However, the development and utilization of CCOs, especially in large-scale applications at high temperatures, pose significant challenges due to limited design strategies and fabrication techniques. To address these challenges, we develop a new complex concentrated alloy (CCA) AlCrTiVNi<sub>5</sub> screened from the valve metal group. Our approach has yielded a thermally grown (TG-)CCO that has not been previously reported, which demonstrates unique thermomechanical properties, including high thermodynamic stability, low thermal expansion, high fracture tolerance, and an excellent combination of strength and ductility. These initial findings are expected to offer fresh perspectives on designing and developing advanced materials that boast exceptional functionality and versatility.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"74 ","pages":"Pages 46-57"},"PeriodicalIF":21.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369702124000269/pdfft?md5=79de1394d684186ad9df68f65c00cabf&pid=1-s2.0-S1369702124000269-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel entropy-stabilized oxide coating thermally grown from a valve metal-based complex concentrated alloy\",\"authors\":\"Meifeng Li,&nbsp;Haofei Sun,&nbsp;Xuehai Tan,&nbsp;Hao Zhang,&nbsp;Jing Liu\",\"doi\":\"10.1016/j.mattod.2024.02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The enhanced compositional flexibility of complex concentrated materials, which can incorporate multiple-principal elements, provides the opportunity to explore a wider range of compositions and unconventional properties in multifunctional materials. Complex concentrated oxides (CCOs) have demonstrated attractive functionalities in energy storage and catalysis applications, motivating the expansion of the boundaries of CCOs with accessible compositions and unique properties. However, the development and utilization of CCOs, especially in large-scale applications at high temperatures, pose significant challenges due to limited design strategies and fabrication techniques. To address these challenges, we develop a new complex concentrated alloy (CCA) AlCrTiVNi<sub>5</sub> screened from the valve metal group. Our approach has yielded a thermally grown (TG-)CCO that has not been previously reported, which demonstrates unique thermomechanical properties, including high thermodynamic stability, low thermal expansion, high fracture tolerance, and an excellent combination of strength and ductility. These initial findings are expected to offer fresh perspectives on designing and developing advanced materials that boast exceptional functionality and versatility.</p></div>\",\"PeriodicalId\":387,\"journal\":{\"name\":\"Materials Today\",\"volume\":\"74 \",\"pages\":\"Pages 46-57\"},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1369702124000269/pdfft?md5=79de1394d684186ad9df68f65c00cabf&pid=1-s2.0-S1369702124000269-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369702124000269\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124000269","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

一种新型复合氧化物(CCO)鳞片是由 AlTiVCrNi 的新型阀基金属复合浓缩合金(CCA)热生长而成的,具有优异的热机械性能,如各向同性高、热力学稳定性高、热膨胀率低、断裂耐受性高,以及由于独特的熵稳定微结构而具有的强度和延展性的完美结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel entropy-stabilized oxide coating thermally grown from a valve metal-based complex concentrated alloy

The enhanced compositional flexibility of complex concentrated materials, which can incorporate multiple-principal elements, provides the opportunity to explore a wider range of compositions and unconventional properties in multifunctional materials. Complex concentrated oxides (CCOs) have demonstrated attractive functionalities in energy storage and catalysis applications, motivating the expansion of the boundaries of CCOs with accessible compositions and unique properties. However, the development and utilization of CCOs, especially in large-scale applications at high temperatures, pose significant challenges due to limited design strategies and fabrication techniques. To address these challenges, we develop a new complex concentrated alloy (CCA) AlCrTiVNi5 screened from the valve metal group. Our approach has yielded a thermally grown (TG-)CCO that has not been previously reported, which demonstrates unique thermomechanical properties, including high thermodynamic stability, low thermal expansion, high fracture tolerance, and an excellent combination of strength and ductility. These initial findings are expected to offer fresh perspectives on designing and developing advanced materials that boast exceptional functionality and versatility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
期刊最新文献
Editorial Board Editorial Board Triboelectrification-induced electroluminescent skin for real-time information recording at a record low pressure threshold of 0.125 kPa Porous materials MOFs and COFs: Energy-saving adsorbents for atmospheric water harvesting The rise of 3D/4D-printed water harvesting materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1