Mei Zhao, Quanping Wu, Pengcheng Liu, Ming Luo, Jia He, Song Xue, Yonglian Xiong, Xueping Zong
{"title":"用于反相包晶石太阳能电池的含功能基团的绿色溶剂可加工聚合物空穴传输材料","authors":"Mei Zhao, Quanping Wu, Pengcheng Liu, Ming Luo, Jia He, Song Xue, Yonglian Xiong, Xueping Zong","doi":"10.1016/j.mtener.2024.101549","DOIUrl":null,"url":null,"abstract":"Exploring novel hole transporting materials (HTMs) with high hole mobility and eco-friendly processability are imperative for the commercialization of perovskite solar cells (PSCs). However, there is a “trade-off” that the introduction of large-conjugated units aiming to ensure high hole mobility, inevitably compromises the green-solvent solubility of HTMs. In this work, a hybrid strategy of rigidity and flexibility is proposed, in which the conjugated unit is assembled by the rigid binaphthylamine core, and the amide-bond constitutes the flexible backbone. Polar solubilizing units ethylenedioxythiophene and thiophene are used as bridges to construct two kinds of polymers, cited as EDOT-SMe and T-SMe, respectively. Both polymers achieve high hole mobility, well-matched energy levels and efficient defect passivation effect toward the perovskite films. When processing the HTM films with the green solvent (2-methylanisole), the corresponding PSCs deliver fill factors as high as 82.7% for EDOT-SMe and 81.9% for T-SMe, respectively. Consequently, s of 20.25% for EDOT-SMe and 20.09% for T-SMe are realized, outperforming that of commercial polymer poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA, 19.71%). Moreover, PSCs with these polyamides achieve good long-term stability. This work paves a new path for exploring efficient and green-solvent processable polymeric HTMs.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"1 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green-Solvent Processable Polymeric Hole Transport Materials with Functional Groups for Inverted Perovskite Solar Cell\",\"authors\":\"Mei Zhao, Quanping Wu, Pengcheng Liu, Ming Luo, Jia He, Song Xue, Yonglian Xiong, Xueping Zong\",\"doi\":\"10.1016/j.mtener.2024.101549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploring novel hole transporting materials (HTMs) with high hole mobility and eco-friendly processability are imperative for the commercialization of perovskite solar cells (PSCs). However, there is a “trade-off” that the introduction of large-conjugated units aiming to ensure high hole mobility, inevitably compromises the green-solvent solubility of HTMs. In this work, a hybrid strategy of rigidity and flexibility is proposed, in which the conjugated unit is assembled by the rigid binaphthylamine core, and the amide-bond constitutes the flexible backbone. Polar solubilizing units ethylenedioxythiophene and thiophene are used as bridges to construct two kinds of polymers, cited as EDOT-SMe and T-SMe, respectively. Both polymers achieve high hole mobility, well-matched energy levels and efficient defect passivation effect toward the perovskite films. When processing the HTM films with the green solvent (2-methylanisole), the corresponding PSCs deliver fill factors as high as 82.7% for EDOT-SMe and 81.9% for T-SMe, respectively. Consequently, s of 20.25% for EDOT-SMe and 20.09% for T-SMe are realized, outperforming that of commercial polymer poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA, 19.71%). Moreover, PSCs with these polyamides achieve good long-term stability. This work paves a new path for exploring efficient and green-solvent processable polymeric HTMs.\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101549\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101549","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Green-Solvent Processable Polymeric Hole Transport Materials with Functional Groups for Inverted Perovskite Solar Cell
Exploring novel hole transporting materials (HTMs) with high hole mobility and eco-friendly processability are imperative for the commercialization of perovskite solar cells (PSCs). However, there is a “trade-off” that the introduction of large-conjugated units aiming to ensure high hole mobility, inevitably compromises the green-solvent solubility of HTMs. In this work, a hybrid strategy of rigidity and flexibility is proposed, in which the conjugated unit is assembled by the rigid binaphthylamine core, and the amide-bond constitutes the flexible backbone. Polar solubilizing units ethylenedioxythiophene and thiophene are used as bridges to construct two kinds of polymers, cited as EDOT-SMe and T-SMe, respectively. Both polymers achieve high hole mobility, well-matched energy levels and efficient defect passivation effect toward the perovskite films. When processing the HTM films with the green solvent (2-methylanisole), the corresponding PSCs deliver fill factors as high as 82.7% for EDOT-SMe and 81.9% for T-SMe, respectively. Consequently, s of 20.25% for EDOT-SMe and 20.09% for T-SMe are realized, outperforming that of commercial polymer poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA, 19.71%). Moreover, PSCs with these polyamides achieve good long-term stability. This work paves a new path for exploring efficient and green-solvent processable polymeric HTMs.
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials