辐射防护帘长度对过肩透视系统散射剂量率分布和内镜医师眼球镜片剂量的影响。

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL Physical and Engineering Sciences in Medicine Pub Date : 2024-06-01 Epub Date: 2024-03-14 DOI:10.1007/s13246-024-01398-w
Kosuke Matsubara, Asuka Nakajima, Ayaka Hirosawa, Ryo Yoshikawa, Nao Ichikawa, Kotaro Fukushima, Atsushi Fukuda
{"title":"辐射防护帘长度对过肩透视系统散射剂量率分布和内镜医师眼球镜片剂量的影响。","authors":"Kosuke Matsubara, Asuka Nakajima, Ayaka Hirosawa, Ryo Yoshikawa, Nao Ichikawa, Kotaro Fukushima, Atsushi Fukuda","doi":"10.1007/s13246-024-01398-w","DOIUrl":null,"url":null,"abstract":"<p><p>Sufficient dose reduction may not be achieved if radioprotective curtains are folded. This study aimed to evaluate the scattered dose rate distribution and physician eye lens dose at different curtain lengths. Using an over-couch fluoroscopy system, dH*(10)/dt was measured using a survey meter 150 cm from the floor at 29 positions in the examination room when the curtain lengths were 0% (no curtain), 50%, 75%, and 100%. The absorbed dose rates in the air at the positions of endoscopist and assistant were calculated using a Monte Carlo simulation by varying the curtain length from 0 to 100%. The air kerma was measured by 10 min fluoroscopy using optically stimulated luminescence dosimeters at the eye surfaces of the endoscopist phantom and the outside and inside of the radioprotective goggles. At curtain lengths of 50%, 75%, and 100%, the ratios of dH*(10)/dt relative to 0% ranged from 80.8 to 104.1%, 10.5 to 61.0%, and 11.8 to 24.8%, respectively. In the simulation, the absorbed dose rates at the endoscopist's and assistant's positions changed rapidly between 55 and 75% and 65% and 80% of the curtain length, respectively. At the 0%, 50%, 75%, and 100% curtain lengths, the air kerma at the left eye surface of the endoscopist phantom was 237 ± 29, 271 ± 30, 37.7 ± 7.5, and 33.5 ± 6.1 μGy, respectively. Therefore, a curtain length of 75% or greater is required to achieve a sufficient eye lens dose reduction effect at the position of the endoscopist.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166833/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of radioprotective curtain length on the scattered dose rate distribution and endoscopist eye lens dose with an over-couch fluoroscopy system.\",\"authors\":\"Kosuke Matsubara, Asuka Nakajima, Ayaka Hirosawa, Ryo Yoshikawa, Nao Ichikawa, Kotaro Fukushima, Atsushi Fukuda\",\"doi\":\"10.1007/s13246-024-01398-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sufficient dose reduction may not be achieved if radioprotective curtains are folded. This study aimed to evaluate the scattered dose rate distribution and physician eye lens dose at different curtain lengths. Using an over-couch fluoroscopy system, dH*(10)/dt was measured using a survey meter 150 cm from the floor at 29 positions in the examination room when the curtain lengths were 0% (no curtain), 50%, 75%, and 100%. The absorbed dose rates in the air at the positions of endoscopist and assistant were calculated using a Monte Carlo simulation by varying the curtain length from 0 to 100%. The air kerma was measured by 10 min fluoroscopy using optically stimulated luminescence dosimeters at the eye surfaces of the endoscopist phantom and the outside and inside of the radioprotective goggles. At curtain lengths of 50%, 75%, and 100%, the ratios of dH*(10)/dt relative to 0% ranged from 80.8 to 104.1%, 10.5 to 61.0%, and 11.8 to 24.8%, respectively. In the simulation, the absorbed dose rates at the endoscopist's and assistant's positions changed rapidly between 55 and 75% and 65% and 80% of the curtain length, respectively. At the 0%, 50%, 75%, and 100% curtain lengths, the air kerma at the left eye surface of the endoscopist phantom was 237 ± 29, 271 ± 30, 37.7 ± 7.5, and 33.5 ± 6.1 μGy, respectively. Therefore, a curtain length of 75% or greater is required to achieve a sufficient eye lens dose reduction effect at the position of the endoscopist.</p>\",\"PeriodicalId\":48490,\"journal\":{\"name\":\"Physical and Engineering Sciences in Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166833/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical and Engineering Sciences in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-024-01398-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01398-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

如果折叠放射防护帘,可能无法充分降低剂量。本研究旨在评估不同帘幕长度下的散射剂量率分布和医生眼球镜片剂量。在检查室的 29 个位置,当帘幕长度为 0%(无帘幕)、50%、75% 和 100% 时,使用距离地面 150 厘米的测量仪测量了 dH*(10)/dt。内镜医师和助手所在位置的空气吸收剂量率是通过蒙特卡洛模拟计算得出的,幕布长度从 0% 到 100% 不等。通过 10 分钟的透视,使用光刺激发光剂量计测量了内镜医师模型眼球表面和辐射防护镜内外的空气热辐射。在帘幕长度为 50%、75% 和 100% 时,dH*(10)/dt 相对于 0% 的比率分别为 80.8% 至 104.1%、10.5% 至 61.0% 和 11.8% 至 24.8%。在模拟中,内镜医师和助手位置的吸收剂量率分别在帘幕长度的 55% 至 75% 和 65% 至 80% 之间快速变化。在帘幕长度为 0%、50%、75% 和 100% 时,内窥镜操作员模型左眼表面的空气切尔马分别为 237 ± 29、271 ± 30、37.7 ± 7.5 和 33.5 ± 6.1 μGy。因此,在内窥镜操作员的位置,需要 75% 或更大的帘幕长度才能达到足够的眼球镜片剂量降低效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of radioprotective curtain length on the scattered dose rate distribution and endoscopist eye lens dose with an over-couch fluoroscopy system.

Sufficient dose reduction may not be achieved if radioprotective curtains are folded. This study aimed to evaluate the scattered dose rate distribution and physician eye lens dose at different curtain lengths. Using an over-couch fluoroscopy system, dH*(10)/dt was measured using a survey meter 150 cm from the floor at 29 positions in the examination room when the curtain lengths were 0% (no curtain), 50%, 75%, and 100%. The absorbed dose rates in the air at the positions of endoscopist and assistant were calculated using a Monte Carlo simulation by varying the curtain length from 0 to 100%. The air kerma was measured by 10 min fluoroscopy using optically stimulated luminescence dosimeters at the eye surfaces of the endoscopist phantom and the outside and inside of the radioprotective goggles. At curtain lengths of 50%, 75%, and 100%, the ratios of dH*(10)/dt relative to 0% ranged from 80.8 to 104.1%, 10.5 to 61.0%, and 11.8 to 24.8%, respectively. In the simulation, the absorbed dose rates at the endoscopist's and assistant's positions changed rapidly between 55 and 75% and 65% and 80% of the curtain length, respectively. At the 0%, 50%, 75%, and 100% curtain lengths, the air kerma at the left eye surface of the endoscopist phantom was 237 ± 29, 271 ± 30, 37.7 ± 7.5, and 33.5 ± 6.1 μGy, respectively. Therefore, a curtain length of 75% or greater is required to achieve a sufficient eye lens dose reduction effect at the position of the endoscopist.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
期刊最新文献
PET/CT-based 3D multi-class semantic segmentation of ovarian cancer and the stability of the extracted radiomics features. PPG2RespNet: a deep learning model for respirational signal synthesis and monitoring from photoplethysmography (PPG) signal Ecg signal watermarking using QR decomposition Effect of mirror system and scanner bed of a flatbed scanner on lateral response artefact in radiochromic film dosimetry A deep learning phase-based solution in 2D echocardiography motion estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1