利用多源迁移学习预测 COVID-19 患者的急诊室复诊率。

Yuelyu Ji, Yuhe Gao, Runxue Bao, Qi Li, Disheng Liu, Yiming Sun, Ye Ye
{"title":"利用多源迁移学习预测 COVID-19 患者的急诊室复诊率。","authors":"Yuelyu Ji, Yuhe Gao, Runxue Bao, Qi Li, Disheng Liu, Yiming Sun, Ye Ye","doi":"10.1109/ICHI57859.2023.00028","DOIUrl":null,"url":null,"abstract":"<p><p>The coronavirus disease 2019 (COVID-19) has led to a global pandemic of significant severity. In addition to its high level of contagiousness, COVID-19 can have a heterogeneous clinical course, ranging from asymptomatic carriers to severe and potentially life-threatening health complications. Many patients have to revisit the emergency room (ER) within a short time after discharge, which significantly increases the workload for medical staff. Early identification of such patients is crucial for helping physicians focus on treating life-threatening cases. In this study, we obtained Electronic Health Records (EHRs) of 3,210 encounters from 13 affiliated ERs within the University of Pittsburgh Medical Center between March 2020 and January 2021. We leveraged a Natural Language Processing technique, ScispaCy, to extract clinical concepts and used the 1001 most frequent concepts to develop 7-day revisit models for COVID-19 patients in ERs. The research data we collected were obtained from 13 ERs, which may have distributional differences that could affect the model development. To address this issue, we employed a classic deep transfer learning method called the Domain Adversarial Neural Network (DANN) and evaluated different modeling strategies, including the Multi-DANN algorithm (which considers the source differences), the Single-DANN algorithm (which doesn't consider the source differences), and three baseline methods: using only source data, using only target data, and using a mixture of source and target data. Results showed that the Multi-DANN models outperformed the Single-DANN models and baseline models in predicting revisits of COVID-19 patients to the ER within 7 days after discharge (median AUROC = 0.8 vs. 0.5). Notably, the Multi-DANN strategy effectively addressed the heterogeneity among multiple source domains and improved the adaptation of source data to the target domain. Moreover, the high performance of Multi-DANN models indicates that EHRs are informative for developing a prediction model to identify COVID-19 patients who are very likely to revisit an ER within 7 days after discharge.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2023 ","pages":"138-144"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939709/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prediction of COVID-19 Patients' Emergency Room Revisit using Multi-Source Transfer Learning.\",\"authors\":\"Yuelyu Ji, Yuhe Gao, Runxue Bao, Qi Li, Disheng Liu, Yiming Sun, Ye Ye\",\"doi\":\"10.1109/ICHI57859.2023.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The coronavirus disease 2019 (COVID-19) has led to a global pandemic of significant severity. In addition to its high level of contagiousness, COVID-19 can have a heterogeneous clinical course, ranging from asymptomatic carriers to severe and potentially life-threatening health complications. Many patients have to revisit the emergency room (ER) within a short time after discharge, which significantly increases the workload for medical staff. Early identification of such patients is crucial for helping physicians focus on treating life-threatening cases. In this study, we obtained Electronic Health Records (EHRs) of 3,210 encounters from 13 affiliated ERs within the University of Pittsburgh Medical Center between March 2020 and January 2021. We leveraged a Natural Language Processing technique, ScispaCy, to extract clinical concepts and used the 1001 most frequent concepts to develop 7-day revisit models for COVID-19 patients in ERs. The research data we collected were obtained from 13 ERs, which may have distributional differences that could affect the model development. To address this issue, we employed a classic deep transfer learning method called the Domain Adversarial Neural Network (DANN) and evaluated different modeling strategies, including the Multi-DANN algorithm (which considers the source differences), the Single-DANN algorithm (which doesn't consider the source differences), and three baseline methods: using only source data, using only target data, and using a mixture of source and target data. Results showed that the Multi-DANN models outperformed the Single-DANN models and baseline models in predicting revisits of COVID-19 patients to the ER within 7 days after discharge (median AUROC = 0.8 vs. 0.5). Notably, the Multi-DANN strategy effectively addressed the heterogeneity among multiple source domains and improved the adaptation of source data to the target domain. Moreover, the high performance of Multi-DANN models indicates that EHRs are informative for developing a prediction model to identify COVID-19 patients who are very likely to revisit an ER within 7 days after discharge.</p>\",\"PeriodicalId\":73284,\"journal\":{\"name\":\"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics\",\"volume\":\"2023 \",\"pages\":\"138-144\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939709/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHI57859.2023.00028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHI57859.2023.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2019 年冠状病毒病(COVID-19)导致了一场严重的全球大流行。除了传染性强之外,COVID-19 的临床病程也多种多样,从无症状携带者到严重并可能危及生命的并发症,不一而足。许多患者在出院后很短时间内就必须再次前往急诊室(ER)就诊,这大大增加了医务人员的工作量。及早发现这类患者对于帮助医生集中精力治疗危及生命的病例至关重要。在这项研究中,我们从匹兹堡大学医疗中心的 13 个附属急诊室获取了 2020 年 3 月至 2021 年 1 月期间 3210 次就诊的电子健康记录(EHR)。我们利用自然语言处理技术 ScispaCy 提取临床概念,并使用 1001 个最常见的概念为急诊室的 COVID-19 患者开发 7 天重访模型。我们收集的研究数据来自 13 家急诊室,其分布差异可能会影响模型的开发。为了解决这个问题,我们采用了一种名为领域对抗神经网络(DANN)的经典深度迁移学习方法,并评估了不同的建模策略,包括多DANN算法(考虑来源差异)、单DANN算法(不考虑来源差异)以及三种基线方法:仅使用来源数据、仅使用目标数据以及使用来源和目标数据的混合数据。结果显示,Multi-DANN 模型在预测 COVID-19 患者出院后 7 天内再次进入急诊室方面的表现优于 Single-DANN 模型和基线模型(中位数 AUROC = 0.8 vs. 0.5)。值得注意的是,Multi-DANN 策略有效地解决了多个源域之间的异质性问题,提高了源数据对目标域的适应性。此外,Multi-DANN 模型的高性能表明,电子病历对于开发预测模型以识别出院后 7 天内极有可能再次到急诊室就诊的 COVID-19 患者具有参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of COVID-19 Patients' Emergency Room Revisit using Multi-Source Transfer Learning.

The coronavirus disease 2019 (COVID-19) has led to a global pandemic of significant severity. In addition to its high level of contagiousness, COVID-19 can have a heterogeneous clinical course, ranging from asymptomatic carriers to severe and potentially life-threatening health complications. Many patients have to revisit the emergency room (ER) within a short time after discharge, which significantly increases the workload for medical staff. Early identification of such patients is crucial for helping physicians focus on treating life-threatening cases. In this study, we obtained Electronic Health Records (EHRs) of 3,210 encounters from 13 affiliated ERs within the University of Pittsburgh Medical Center between March 2020 and January 2021. We leveraged a Natural Language Processing technique, ScispaCy, to extract clinical concepts and used the 1001 most frequent concepts to develop 7-day revisit models for COVID-19 patients in ERs. The research data we collected were obtained from 13 ERs, which may have distributional differences that could affect the model development. To address this issue, we employed a classic deep transfer learning method called the Domain Adversarial Neural Network (DANN) and evaluated different modeling strategies, including the Multi-DANN algorithm (which considers the source differences), the Single-DANN algorithm (which doesn't consider the source differences), and three baseline methods: using only source data, using only target data, and using a mixture of source and target data. Results showed that the Multi-DANN models outperformed the Single-DANN models and baseline models in predicting revisits of COVID-19 patients to the ER within 7 days after discharge (median AUROC = 0.8 vs. 0.5). Notably, the Multi-DANN strategy effectively addressed the heterogeneity among multiple source domains and improved the adaptation of source data to the target domain. Moreover, the high performance of Multi-DANN models indicates that EHRs are informative for developing a prediction model to identify COVID-19 patients who are very likely to revisit an ER within 7 days after discharge.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An average-case efficient two-stage algorithm for enumerating all longest common substrings of minimum length k between genome pairs. Analyzing Social Factors to Enhance Suicide Prevention Across Population Groups. Attention-based Imputation of Missing Values in Electronic Health Records Tabular Data. Developing a computational representation of human physical activity and exercise using open ontology-based approach: a Tai Chi use case. Evaluating Generative Models in Medical Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1