{"title":"ResDeepSurv:基于残块和自我关注机制的深度神经网络生存模型","authors":"Yuchen Wang, Xianchun Kong, Xiao Bi, Lizhen Cui, Hong Yu, Hao Wu","doi":"10.1007/s12539-024-00617-y","DOIUrl":null,"url":null,"abstract":"<p><p>Survival analysis, as a widely used method for analyzing and predicting the timing of event occurrence, plays a crucial role in the medicine field. Medical professionals utilize survival models to gain insight into the effects of patient covariates on the disease, and the correlation with the effectiveness of different treatment strategies. This knowledge is essential for the development of treatment plans and the enhancement of treatment approaches. Conventional survival models, such as the Cox proportional hazards model, require a significant amount of feature engineering or prior knowledge to facilitate personalized modeling. To address these limitations, we propose a novel residual-based self-attention deep neural network for survival modeling, called ResDeepSurv, which combines the benefits of neural networks and the Cox proportional hazards regression model. The model proposed in our study simulates the distribution of survival time and the correlation between covariates and outcomes, but does not impose strict assumptions on the basic distribution of survival data. This approach effectively accounts for both linear and nonlinear risk functions in survival data analysis. The performance of our model in analyzing survival data with various risk functions is on par with or even superior to that of other existing survival analysis methods. Furthermore, we validate the superior performance of our model in comparison to currently existing methods by evaluating multiple publicly available clinical datasets. Through this study, we prove the effectiveness of our proposed model in survival analysis, providing a promising alternative to traditional approaches. The application of deep learning techniques and the ability to capture complex relationships between covariates and survival outcomes without relying on extensive feature engineering make our model a valuable tool for personalized medicine and decision-making in clinical practice.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"405-417"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ResDeepSurv: A Survival Model for Deep Neural Networks Based on Residual Blocks and Self-attention Mechanism.\",\"authors\":\"Yuchen Wang, Xianchun Kong, Xiao Bi, Lizhen Cui, Hong Yu, Hao Wu\",\"doi\":\"10.1007/s12539-024-00617-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Survival analysis, as a widely used method for analyzing and predicting the timing of event occurrence, plays a crucial role in the medicine field. Medical professionals utilize survival models to gain insight into the effects of patient covariates on the disease, and the correlation with the effectiveness of different treatment strategies. This knowledge is essential for the development of treatment plans and the enhancement of treatment approaches. Conventional survival models, such as the Cox proportional hazards model, require a significant amount of feature engineering or prior knowledge to facilitate personalized modeling. To address these limitations, we propose a novel residual-based self-attention deep neural network for survival modeling, called ResDeepSurv, which combines the benefits of neural networks and the Cox proportional hazards regression model. The model proposed in our study simulates the distribution of survival time and the correlation between covariates and outcomes, but does not impose strict assumptions on the basic distribution of survival data. This approach effectively accounts for both linear and nonlinear risk functions in survival data analysis. The performance of our model in analyzing survival data with various risk functions is on par with or even superior to that of other existing survival analysis methods. Furthermore, we validate the superior performance of our model in comparison to currently existing methods by evaluating multiple publicly available clinical datasets. Through this study, we prove the effectiveness of our proposed model in survival analysis, providing a promising alternative to traditional approaches. The application of deep learning techniques and the ability to capture complex relationships between covariates and survival outcomes without relying on extensive feature engineering make our model a valuable tool for personalized medicine and decision-making in clinical practice.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"405-417\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00617-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00617-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
ResDeepSurv: A Survival Model for Deep Neural Networks Based on Residual Blocks and Self-attention Mechanism.
Survival analysis, as a widely used method for analyzing and predicting the timing of event occurrence, plays a crucial role in the medicine field. Medical professionals utilize survival models to gain insight into the effects of patient covariates on the disease, and the correlation with the effectiveness of different treatment strategies. This knowledge is essential for the development of treatment plans and the enhancement of treatment approaches. Conventional survival models, such as the Cox proportional hazards model, require a significant amount of feature engineering or prior knowledge to facilitate personalized modeling. To address these limitations, we propose a novel residual-based self-attention deep neural network for survival modeling, called ResDeepSurv, which combines the benefits of neural networks and the Cox proportional hazards regression model. The model proposed in our study simulates the distribution of survival time and the correlation between covariates and outcomes, but does not impose strict assumptions on the basic distribution of survival data. This approach effectively accounts for both linear and nonlinear risk functions in survival data analysis. The performance of our model in analyzing survival data with various risk functions is on par with or even superior to that of other existing survival analysis methods. Furthermore, we validate the superior performance of our model in comparison to currently existing methods by evaluating multiple publicly available clinical datasets. Through this study, we prove the effectiveness of our proposed model in survival analysis, providing a promising alternative to traditional approaches. The application of deep learning techniques and the ability to capture complex relationships between covariates and survival outcomes without relying on extensive feature engineering make our model a valuable tool for personalized medicine and decision-making in clinical practice.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.