Julearn:一个易于使用的库,用于对 ML 模型进行无泄漏评估和检查。

GigaByte (Hong Kong, China) Pub Date : 2024-03-07 eCollection Date: 2024-01-01 DOI:10.46471/gigabyte.113
Sami Hamdan, Shammi More, Leonard Sasse, Vera Komeyer, Kaustubh R Patil, Federico Raimondo
{"title":"Julearn:一个易于使用的库,用于对 ML 模型进行无泄漏评估和检查。","authors":"Sami Hamdan, Shammi More, Leonard Sasse, Vera Komeyer, Kaustubh R Patil, Federico Raimondo","doi":"10.46471/gigabyte.113","DOIUrl":null,"url":null,"abstract":"<p><p>The fast-paced development of machine learning (ML) and its increasing adoption in research challenge researchers without extensive training in ML. In neuroscience, ML can help understand brain-behavior relationships, diagnose diseases and develop biomarkers using data from sources like magnetic resonance imaging and electroencephalography. Primarily, ML builds models to make accurate predictions on unseen data. Researchers evaluate models' performance and generalizability using techniques such as cross-validation (CV). However, choosing a CV scheme and evaluating an ML pipeline is challenging and, if done improperly, can lead to overestimated results and incorrect interpretations. Here, we created julearn, an open-source Python library allowing researchers to design and evaluate complex ML pipelines without encountering common pitfalls. We present the rationale behind julearn's design, its core features, and showcase three examples of previously-published research projects. Julearn simplifies the access to ML providing an easy-to-use environment. With its design, unique features, simple interface, and practical documentation, it poses as a useful Python-based library for research projects.</p>","PeriodicalId":73157,"journal":{"name":"GigaByte (Hong Kong, China)","volume":"2024 ","pages":"gigabyte113"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940896/pdf/","citationCount":"0","resultStr":"{\"title\":\"Julearn: an easy-to-use library for leakage-free evaluation and inspection of ML models.\",\"authors\":\"Sami Hamdan, Shammi More, Leonard Sasse, Vera Komeyer, Kaustubh R Patil, Federico Raimondo\",\"doi\":\"10.46471/gigabyte.113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The fast-paced development of machine learning (ML) and its increasing adoption in research challenge researchers without extensive training in ML. In neuroscience, ML can help understand brain-behavior relationships, diagnose diseases and develop biomarkers using data from sources like magnetic resonance imaging and electroencephalography. Primarily, ML builds models to make accurate predictions on unseen data. Researchers evaluate models' performance and generalizability using techniques such as cross-validation (CV). However, choosing a CV scheme and evaluating an ML pipeline is challenging and, if done improperly, can lead to overestimated results and incorrect interpretations. Here, we created julearn, an open-source Python library allowing researchers to design and evaluate complex ML pipelines without encountering common pitfalls. We present the rationale behind julearn's design, its core features, and showcase three examples of previously-published research projects. Julearn simplifies the access to ML providing an easy-to-use environment. With its design, unique features, simple interface, and practical documentation, it poses as a useful Python-based library for research projects.</p>\",\"PeriodicalId\":73157,\"journal\":{\"name\":\"GigaByte (Hong Kong, China)\",\"volume\":\"2024 \",\"pages\":\"gigabyte113\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940896/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaByte (Hong Kong, China)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46471/gigabyte.113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaByte (Hong Kong, China)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46471/gigabyte.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)的发展日新月异,在研究领域的应用也日益广泛,这对没有接受过广泛 ML 培训的研究人员提出了挑战。在神经科学领域,ML 可以帮助理解大脑与行为之间的关系,利用磁共振成像和脑电图等数据源诊断疾病和开发生物标记物。ML 主要是建立模型,对未见数据进行准确预测。研究人员使用交叉验证(CV)等技术评估模型的性能和可推广性。然而,选择交叉验证方案和评估 ML 管道具有挑战性,如果操作不当,可能会导致结果被高估和解释错误。在这里,我们创建了 julearn,这是一个开源 Python 库,允许研究人员设计和评估复杂的 ML 管道,而不会遇到常见的陷阱。我们介绍了 julearn 的设计原理、核心功能,并展示了之前发表的三个研究项目实例。Julearn 提供了一个易于使用的环境,简化了对 ML 的访问。凭借其设计、独特的功能、简单的界面和实用的文档,它成为研究项目中一个有用的基于 Python 的库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Julearn: an easy-to-use library for leakage-free evaluation and inspection of ML models.

The fast-paced development of machine learning (ML) and its increasing adoption in research challenge researchers without extensive training in ML. In neuroscience, ML can help understand brain-behavior relationships, diagnose diseases and develop biomarkers using data from sources like magnetic resonance imaging and electroencephalography. Primarily, ML builds models to make accurate predictions on unseen data. Researchers evaluate models' performance and generalizability using techniques such as cross-validation (CV). However, choosing a CV scheme and evaluating an ML pipeline is challenging and, if done improperly, can lead to overestimated results and incorrect interpretations. Here, we created julearn, an open-source Python library allowing researchers to design and evaluate complex ML pipelines without encountering common pitfalls. We present the rationale behind julearn's design, its core features, and showcase three examples of previously-published research projects. Julearn simplifies the access to ML providing an easy-to-use environment. With its design, unique features, simple interface, and practical documentation, it poses as a useful Python-based library for research projects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
5 weeks
期刊最新文献
The genome of the sapphire damselfish Chrysiptera cyanea: a new resource to support further investigation of the evolution of Pomacentrids. Polyploid genome assembly of Cardamine chenopodiifolia. NeuroVar: an open-source tool for the visualization of gene expression and variation data for biomarkers of neurological diseases. Whole-genome re-sequencing of the Baikal seal and other phocid seals for a glimpse into their genetic diversity, demographic history, and phylogeny. Chromosome-level genome assembly and annotation of the crested gecko, Correlophus ciliatus, a lizard incapable of tail regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1