Sajad Sohrabi , Jianan Fu , Luyao Li , Yu Zhang , Xin Li , Fei Sun , Jiang Ma , Wei Hua Wang
{"title":"金属玻璃部件的制造:工艺、结构和性能","authors":"Sajad Sohrabi , Jianan Fu , Luyao Li , Yu Zhang , Xin Li , Fei Sun , Jiang Ma , Wei Hua Wang","doi":"10.1016/j.pmatsci.2024.101283","DOIUrl":null,"url":null,"abstract":"<div><p>Metallic glasses (MGs) are out-of-equilibrium metallic systems known for their unique structural and functional properties arising from structural long-range disorder. Despite their attractive properties, practical applications of MGs fabricated by traditional casting strategy face challenges due to size constraints (limited glass-forming ability) and shape complexity issues. Over the decades since the discovery of MGs in the 1960 s, significant progress has been made in overcoming these limitations by the manufacture strategy, enabling the fabrication of engineering components with desired sizes, tailored shapes, and intricate geometries. This paper presents a comprehensive assessment of the state-of-art for manufacturing techniques of large MG and MG parts. The advancements in subtractive, formative, and additive manufacturing of MGs, as well as their joining and welding processes, are reviewed. By consolidating the existing knowledge, this review aims to suggest the practical and promising approach to overcome the limited glass-forming ability and size restrictions in cast MGs through the manufacture strategy, offer insights for further advancements in MG manufacturing, address evolving nature of the field and promote a better understanding of the key scientific aspects of structures and properties in processed MG components.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"144 ","pages":"Article 101283"},"PeriodicalIF":33.6000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manufacturing of metallic glass components: Processes, structures and properties\",\"authors\":\"Sajad Sohrabi , Jianan Fu , Luyao Li , Yu Zhang , Xin Li , Fei Sun , Jiang Ma , Wei Hua Wang\",\"doi\":\"10.1016/j.pmatsci.2024.101283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metallic glasses (MGs) are out-of-equilibrium metallic systems known for their unique structural and functional properties arising from structural long-range disorder. Despite their attractive properties, practical applications of MGs fabricated by traditional casting strategy face challenges due to size constraints (limited glass-forming ability) and shape complexity issues. Over the decades since the discovery of MGs in the 1960 s, significant progress has been made in overcoming these limitations by the manufacture strategy, enabling the fabrication of engineering components with desired sizes, tailored shapes, and intricate geometries. This paper presents a comprehensive assessment of the state-of-art for manufacturing techniques of large MG and MG parts. The advancements in subtractive, formative, and additive manufacturing of MGs, as well as their joining and welding processes, are reviewed. By consolidating the existing knowledge, this review aims to suggest the practical and promising approach to overcome the limited glass-forming ability and size restrictions in cast MGs through the manufacture strategy, offer insights for further advancements in MG manufacturing, address evolving nature of the field and promote a better understanding of the key scientific aspects of structures and properties in processed MG components.</p></div>\",\"PeriodicalId\":411,\"journal\":{\"name\":\"Progress in Materials Science\",\"volume\":\"144 \",\"pages\":\"Article 101283\"},\"PeriodicalIF\":33.6000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079642524000525\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642524000525","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Manufacturing of metallic glass components: Processes, structures and properties
Metallic glasses (MGs) are out-of-equilibrium metallic systems known for their unique structural and functional properties arising from structural long-range disorder. Despite their attractive properties, practical applications of MGs fabricated by traditional casting strategy face challenges due to size constraints (limited glass-forming ability) and shape complexity issues. Over the decades since the discovery of MGs in the 1960 s, significant progress has been made in overcoming these limitations by the manufacture strategy, enabling the fabrication of engineering components with desired sizes, tailored shapes, and intricate geometries. This paper presents a comprehensive assessment of the state-of-art for manufacturing techniques of large MG and MG parts. The advancements in subtractive, formative, and additive manufacturing of MGs, as well as their joining and welding processes, are reviewed. By consolidating the existing knowledge, this review aims to suggest the practical and promising approach to overcome the limited glass-forming ability and size restrictions in cast MGs through the manufacture strategy, offer insights for further advancements in MG manufacturing, address evolving nature of the field and promote a better understanding of the key scientific aspects of structures and properties in processed MG components.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.