Claudia Timmreck, Dirk Olonscheck, Andrew P. Ballinger, Roberta D’Agostino, Shih-Wei Fang, Andrew P. Schurer, Gabriele C. Hegerl
{"title":"大型集合框架下气候对日益强烈的热带火山爆发的线性响应","authors":"Claudia Timmreck, Dirk Olonscheck, Andrew P. Ballinger, Roberta D’Agostino, Shih-Wei Fang, Andrew P. Schurer, Gabriele C. Hegerl","doi":"10.1175/jcli-d-23-0408.1","DOIUrl":null,"url":null,"abstract":"Abstract Large explosive volcanic eruptions cause short-term climatic impacts on both regional and global scales. Their impact on tropical climate variability, in particular El Niño–Southern Oscillation (ENSO), is still uncertain, as is their combined and separate effect on tropical and global precipitation. Here, we investigate the relationship between large-scale temperature and precipitation and tropical volcanic eruption strength, using 100-member MPI-ESM ensembles for idealized equatorial symmetric Northern Hemisphere summer eruptions of different sulfur emission strengths. Our results show that for idealized tropical eruptions, global and hemispheric mean near-surface temperature and precipitation anomalies are negative and linearly scalable for sulfur emissions between 10 and 40 Tg S. We identify 20 Tg S emission as a threshold where the global ensemble-mean near-surface temperature and precipitation signals exceed the range of internal variability, even though some ensemble members emerge from variability for lower eruption strengths. Seasonal and ensemble mean patterns of near-surface temperature and precipitation anomalies are highly correlated across eruption strengths, in particular for larger emission strengths in the tropics, and strongly modulated by ENSO. There is a tendency to shift toward a warm ENSO phase for the first postvolcanic year as the emission strength increases. Volcanic cooling emerges on a hemisphere-wide scale, while the precipitation response is more localized, and emergence is mainly confined to the tropics and subtropics. Significance Statement The purpose of this study is to investigate at which strength the climate responses of volcanic forcing can be distinguished from the internal climate variability and whether the responses will linearly increase as the emission strengths become stronger. We ran 100-member MPI-ESM ensembles of idealized equatorial volcanic eruptions of different sulfur emission strengths and find that seasonal and ensemble mean patterns of near-surface temperature and precipitation anomalies are distinguishable and linearly scalable for sulfur emissions from 10 to 40 Tg S if their forcing patterns are similar. The identification of volcanic fingerprints is important for seasonal to decadal forecasts in the case of potential future eruptions and could help to prepare society for the regional climatic consequences of such an event.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"46 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linearity of the Climate Response to Increasingly Strong Tropical Volcanic Eruptions in a Large Ensemble Framework\",\"authors\":\"Claudia Timmreck, Dirk Olonscheck, Andrew P. Ballinger, Roberta D’Agostino, Shih-Wei Fang, Andrew P. Schurer, Gabriele C. Hegerl\",\"doi\":\"10.1175/jcli-d-23-0408.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Large explosive volcanic eruptions cause short-term climatic impacts on both regional and global scales. Their impact on tropical climate variability, in particular El Niño–Southern Oscillation (ENSO), is still uncertain, as is their combined and separate effect on tropical and global precipitation. Here, we investigate the relationship between large-scale temperature and precipitation and tropical volcanic eruption strength, using 100-member MPI-ESM ensembles for idealized equatorial symmetric Northern Hemisphere summer eruptions of different sulfur emission strengths. Our results show that for idealized tropical eruptions, global and hemispheric mean near-surface temperature and precipitation anomalies are negative and linearly scalable for sulfur emissions between 10 and 40 Tg S. We identify 20 Tg S emission as a threshold where the global ensemble-mean near-surface temperature and precipitation signals exceed the range of internal variability, even though some ensemble members emerge from variability for lower eruption strengths. Seasonal and ensemble mean patterns of near-surface temperature and precipitation anomalies are highly correlated across eruption strengths, in particular for larger emission strengths in the tropics, and strongly modulated by ENSO. There is a tendency to shift toward a warm ENSO phase for the first postvolcanic year as the emission strength increases. Volcanic cooling emerges on a hemisphere-wide scale, while the precipitation response is more localized, and emergence is mainly confined to the tropics and subtropics. Significance Statement The purpose of this study is to investigate at which strength the climate responses of volcanic forcing can be distinguished from the internal climate variability and whether the responses will linearly increase as the emission strengths become stronger. We ran 100-member MPI-ESM ensembles of idealized equatorial volcanic eruptions of different sulfur emission strengths and find that seasonal and ensemble mean patterns of near-surface temperature and precipitation anomalies are distinguishable and linearly scalable for sulfur emissions from 10 to 40 Tg S if their forcing patterns are similar. The identification of volcanic fingerprints is important for seasonal to decadal forecasts in the case of potential future eruptions and could help to prepare society for the regional climatic consequences of such an event.\",\"PeriodicalId\":15472,\"journal\":{\"name\":\"Journal of Climate\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Climate\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jcli-d-23-0408.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jcli-d-23-0408.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Linearity of the Climate Response to Increasingly Strong Tropical Volcanic Eruptions in a Large Ensemble Framework
Abstract Large explosive volcanic eruptions cause short-term climatic impacts on both regional and global scales. Their impact on tropical climate variability, in particular El Niño–Southern Oscillation (ENSO), is still uncertain, as is their combined and separate effect on tropical and global precipitation. Here, we investigate the relationship between large-scale temperature and precipitation and tropical volcanic eruption strength, using 100-member MPI-ESM ensembles for idealized equatorial symmetric Northern Hemisphere summer eruptions of different sulfur emission strengths. Our results show that for idealized tropical eruptions, global and hemispheric mean near-surface temperature and precipitation anomalies are negative and linearly scalable for sulfur emissions between 10 and 40 Tg S. We identify 20 Tg S emission as a threshold where the global ensemble-mean near-surface temperature and precipitation signals exceed the range of internal variability, even though some ensemble members emerge from variability for lower eruption strengths. Seasonal and ensemble mean patterns of near-surface temperature and precipitation anomalies are highly correlated across eruption strengths, in particular for larger emission strengths in the tropics, and strongly modulated by ENSO. There is a tendency to shift toward a warm ENSO phase for the first postvolcanic year as the emission strength increases. Volcanic cooling emerges on a hemisphere-wide scale, while the precipitation response is more localized, and emergence is mainly confined to the tropics and subtropics. Significance Statement The purpose of this study is to investigate at which strength the climate responses of volcanic forcing can be distinguished from the internal climate variability and whether the responses will linearly increase as the emission strengths become stronger. We ran 100-member MPI-ESM ensembles of idealized equatorial volcanic eruptions of different sulfur emission strengths and find that seasonal and ensemble mean patterns of near-surface temperature and precipitation anomalies are distinguishable and linearly scalable for sulfur emissions from 10 to 40 Tg S if their forcing patterns are similar. The identification of volcanic fingerprints is important for seasonal to decadal forecasts in the case of potential future eruptions and could help to prepare society for the regional climatic consequences of such an event.
期刊介绍:
The Journal of Climate (JCLI) (ISSN: 0894-8755; eISSN: 1520-0442) publishes research that advances basic understanding of the dynamics and physics of the climate system on large spatial scales, including variability of the atmosphere, oceans, land surface, and cryosphere; past, present, and projected future changes in the climate system; and climate simulation and prediction.