Wictor Magnus Patrício Araújo de Lima, Iris Kemilly Duarte Vieira, Joélcio Lopes de Oliveira Júnior, Danniel Ferreira de Oliveira, Ramon Alves Torquato
{"title":"通过燃烧反应生产掺锰氧化锌基 NTC 热敏电阻","authors":"Wictor Magnus Patrício Araújo de Lima, Iris Kemilly Duarte Vieira, Joélcio Lopes de Oliveira Júnior, Danniel Ferreira de Oliveira, Ramon Alves Torquato","doi":"10.1557/s43579-024-00542-7","DOIUrl":null,"url":null,"abstract":"<p>This study examines the effects of Mn<sup>2+</sup> doping on the microstructure, morphology, and thermoresistive properties of the Zn<sub>x-1</sub>Mn<sub>x</sub>O system (x = 0.8, 0.15 mol), synthesized via a combustion reaction. After uniaxial pressing (191 MPa) and sintering (1373 K), the samples exhibited NTC thermistor characteristics without a second phase. The decrease in the energy <i>gap</i> to 2.9 eV (Mn08) and 2.69 eV (Mn15), along with average particle sizes of 8.79 µm and 2.91 µm, respectively. The parameters α, β, A, B, C, and SF highlight the influence of Mn<sup>2+</sup> doping on the properties of these materials, with potential applications in NTC thermistor devices.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"46 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production of manganese-doped ZnO-based NTC thermistor via combustion reaction\",\"authors\":\"Wictor Magnus Patrício Araújo de Lima, Iris Kemilly Duarte Vieira, Joélcio Lopes de Oliveira Júnior, Danniel Ferreira de Oliveira, Ramon Alves Torquato\",\"doi\":\"10.1557/s43579-024-00542-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study examines the effects of Mn<sup>2+</sup> doping on the microstructure, morphology, and thermoresistive properties of the Zn<sub>x-1</sub>Mn<sub>x</sub>O system (x = 0.8, 0.15 mol), synthesized via a combustion reaction. After uniaxial pressing (191 MPa) and sintering (1373 K), the samples exhibited NTC thermistor characteristics without a second phase. The decrease in the energy <i>gap</i> to 2.9 eV (Mn08) and 2.69 eV (Mn15), along with average particle sizes of 8.79 µm and 2.91 µm, respectively. The parameters α, β, A, B, C, and SF highlight the influence of Mn<sup>2+</sup> doping on the properties of these materials, with potential applications in NTC thermistor devices.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\",\"PeriodicalId\":19016,\"journal\":{\"name\":\"MRS Communications\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MRS Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43579-024-00542-7\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43579-024-00542-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Production of manganese-doped ZnO-based NTC thermistor via combustion reaction
This study examines the effects of Mn2+ doping on the microstructure, morphology, and thermoresistive properties of the Znx-1MnxO system (x = 0.8, 0.15 mol), synthesized via a combustion reaction. After uniaxial pressing (191 MPa) and sintering (1373 K), the samples exhibited NTC thermistor characteristics without a second phase. The decrease in the energy gap to 2.9 eV (Mn08) and 2.69 eV (Mn15), along with average particle sizes of 8.79 µm and 2.91 µm, respectively. The parameters α, β, A, B, C, and SF highlight the influence of Mn2+ doping on the properties of these materials, with potential applications in NTC thermistor devices.
期刊介绍:
MRS Communications is a full-color, high-impact journal focused on rapid publication of completed research with broad appeal to the materials community. MRS Communications offers a rapid but rigorous peer-review process and time to publication. Leveraging its access to the far-reaching technical expertise of MRS members and leading materials researchers from around the world, the journal boasts an experienced and highly respected board of principal editors and reviewers.