Chufeng Lv, Yue Guo, Jian Zhao, Fangqin Dai, Weidong Zeng, Ming Liu
{"title":"加热气氛成分和含量对氧化铜层相位和形态分布的影响","authors":"Chufeng Lv, Yue Guo, Jian Zhao, Fangqin Dai, Weidong Zeng, Ming Liu","doi":"10.1007/s11085-024-10237-y","DOIUrl":null,"url":null,"abstract":"<div><p>When a copper billet is heated in the rolling reheating furnace, certain oxides that affect the surface quality may persist on the substrate. This study investigates the effects of heating atmosphere compositions (N<sub>2</sub>, O<sub>2</sub>, CO<sub>2</sub>, and H<sub>2</sub>O) and contents on the micro-morphology and phase evolution of the copper oxides. The results revealed that O<sub>2</sub> is the primary factor contributing to the formation of nodules on the copper surface. The primary phase of the exfoliated oxides was CuO attached to Cu<sub>2</sub>O, and the nodular oxides also consisted of CuO that directly adhere to copper matrix. Additionally, water vapor can increase the number of Cu<sub>2</sub>O particles on the interface between exfoliated oxide and copper matrix, effectively reducing the number of residual nodular oxides. Finally, water vapor and its dissociation products effectively eliminated the pores within the oxide layer and at the oxide–matrix interface, while CO<sub>2</sub> increased the porosity within the oxide layer.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 4","pages":"649 - 666"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Heating Atmosphere Composition and Content on Phase and Morphology Distribution of Copper Oxide Layer\",\"authors\":\"Chufeng Lv, Yue Guo, Jian Zhao, Fangqin Dai, Weidong Zeng, Ming Liu\",\"doi\":\"10.1007/s11085-024-10237-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>When a copper billet is heated in the rolling reheating furnace, certain oxides that affect the surface quality may persist on the substrate. This study investigates the effects of heating atmosphere compositions (N<sub>2</sub>, O<sub>2</sub>, CO<sub>2</sub>, and H<sub>2</sub>O) and contents on the micro-morphology and phase evolution of the copper oxides. The results revealed that O<sub>2</sub> is the primary factor contributing to the formation of nodules on the copper surface. The primary phase of the exfoliated oxides was CuO attached to Cu<sub>2</sub>O, and the nodular oxides also consisted of CuO that directly adhere to copper matrix. Additionally, water vapor can increase the number of Cu<sub>2</sub>O particles on the interface between exfoliated oxide and copper matrix, effectively reducing the number of residual nodular oxides. Finally, water vapor and its dissociation products effectively eliminated the pores within the oxide layer and at the oxide–matrix interface, while CO<sub>2</sub> increased the porosity within the oxide layer.</p></div>\",\"PeriodicalId\":724,\"journal\":{\"name\":\"Oxidation of Metals\",\"volume\":\"101 4\",\"pages\":\"649 - 666\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxidation of Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11085-024-10237-y\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidation of Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11085-024-10237-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Effect of Heating Atmosphere Composition and Content on Phase and Morphology Distribution of Copper Oxide Layer
When a copper billet is heated in the rolling reheating furnace, certain oxides that affect the surface quality may persist on the substrate. This study investigates the effects of heating atmosphere compositions (N2, O2, CO2, and H2O) and contents on the micro-morphology and phase evolution of the copper oxides. The results revealed that O2 is the primary factor contributing to the formation of nodules on the copper surface. The primary phase of the exfoliated oxides was CuO attached to Cu2O, and the nodular oxides also consisted of CuO that directly adhere to copper matrix. Additionally, water vapor can increase the number of Cu2O particles on the interface between exfoliated oxide and copper matrix, effectively reducing the number of residual nodular oxides. Finally, water vapor and its dissociation products effectively eliminated the pores within the oxide layer and at the oxide–matrix interface, while CO2 increased the porosity within the oxide layer.
期刊介绍:
Oxidation of Metals is the premier source for the rapid dissemination of current research on all aspects of the science of gas-solid reactions at temperatures greater than about 400˚C, with primary focus on the high-temperature corrosion of bulk and coated systems. This authoritative bi-monthly publishes original scientific papers on kinetics, mechanisms, studies of scales from structural and morphological viewpoints, transport properties in scales, phase-boundary reactions, and much more. Articles may discuss both theoretical and experimental work related to gas-solid reactions at the surface or near-surface of a material exposed to elevated temperatures, including reactions with oxygen, nitrogen, sulfur, carbon and halogens. In addition, Oxidation of Metals publishes the results of frontier research concerned with deposit-induced attack. Review papers and short technical notes are encouraged.