{"title":"颗粒流化床中的气体流动模式","authors":"Wilson Barros Jr.","doi":"10.1007/s10035-024-01415-5","DOIUrl":null,"url":null,"abstract":"<p>Here we demonstrate the use of magnetic resonance imaging for monitoring a laser-polarized xenon (<span>\\(^{129}\\)</span>Xe) gas working as a fluidizing phase for a glass bead pack, inside a straight circular tube, simulating a granular gas-fluidized bed. The imaging method enabled encoding spatially resolved velocity and diffusion 2D-axial maps of the gas vertical upflow at variable flow regimes. From these maps one could identify gas flow transitions, hysteresis loops, regions of stagnation, and reversed flow, all of which associated, as well as complementary, to reported flow dynamics probing the particles inside the bed. In particular, we focused on the initial stage of bubbling where quantitative data on gas flow spatial maps and their potential correlation with the granular particles dynamics are scarce.</p>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gas flow patterns in a granular fluidized bed\",\"authors\":\"Wilson Barros Jr.\",\"doi\":\"10.1007/s10035-024-01415-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Here we demonstrate the use of magnetic resonance imaging for monitoring a laser-polarized xenon (<span>\\\\(^{129}\\\\)</span>Xe) gas working as a fluidizing phase for a glass bead pack, inside a straight circular tube, simulating a granular gas-fluidized bed. The imaging method enabled encoding spatially resolved velocity and diffusion 2D-axial maps of the gas vertical upflow at variable flow regimes. From these maps one could identify gas flow transitions, hysteresis loops, regions of stagnation, and reversed flow, all of which associated, as well as complementary, to reported flow dynamics probing the particles inside the bed. In particular, we focused on the initial stage of bubbling where quantitative data on gas flow spatial maps and their potential correlation with the granular particles dynamics are scarce.</p>\",\"PeriodicalId\":49323,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-024-01415-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01415-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Here we demonstrate the use of magnetic resonance imaging for monitoring a laser-polarized xenon (\(^{129}\)Xe) gas working as a fluidizing phase for a glass bead pack, inside a straight circular tube, simulating a granular gas-fluidized bed. The imaging method enabled encoding spatially resolved velocity and diffusion 2D-axial maps of the gas vertical upflow at variable flow regimes. From these maps one could identify gas flow transitions, hysteresis loops, regions of stagnation, and reversed flow, all of which associated, as well as complementary, to reported flow dynamics probing the particles inside the bed. In particular, we focused on the initial stage of bubbling where quantitative data on gas flow spatial maps and their potential correlation with the granular particles dynamics are scarce.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.