{"title":"使用广义误差指标进行点云去噪","authors":"Qun-Ce Xu , Yong-Liang Yang , Bailin Deng","doi":"10.1016/j.gmod.2024.101216","DOIUrl":null,"url":null,"abstract":"<div><p>Effective removal of noises from raw point clouds while preserving geometric features is the key challenge for point cloud denoising. To address this problem, we propose a novel method that jointly optimizes the point positions and normals. To preserve geometric features, our formulation uses a generalized robust error metric to enforce piecewise smoothness of the normal vector field as well as consistency between point positions and normals. By varying the parameter of the error metric, we gradually increase its non-convexity to guide the optimization towards a desirable solution. By combining alternating minimization with a majorization-minimization strategy, we develop a numerical solver for the optimization which guarantees convergence. The effectiveness of our method is demonstrated by extensive comparisons with previous works.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"133 ","pages":"Article 101216"},"PeriodicalIF":2.5000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070324000043/pdfft?md5=48a1964c4abbec912ee9a17b6f0212cf&pid=1-s2.0-S1524070324000043-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Point cloud denoising using a generalized error metric\",\"authors\":\"Qun-Ce Xu , Yong-Liang Yang , Bailin Deng\",\"doi\":\"10.1016/j.gmod.2024.101216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Effective removal of noises from raw point clouds while preserving geometric features is the key challenge for point cloud denoising. To address this problem, we propose a novel method that jointly optimizes the point positions and normals. To preserve geometric features, our formulation uses a generalized robust error metric to enforce piecewise smoothness of the normal vector field as well as consistency between point positions and normals. By varying the parameter of the error metric, we gradually increase its non-convexity to guide the optimization towards a desirable solution. By combining alternating minimization with a majorization-minimization strategy, we develop a numerical solver for the optimization which guarantees convergence. The effectiveness of our method is demonstrated by extensive comparisons with previous works.</p></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"133 \",\"pages\":\"Article 101216\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1524070324000043/pdfft?md5=48a1964c4abbec912ee9a17b6f0212cf&pid=1-s2.0-S1524070324000043-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1524070324000043\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070324000043","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Point cloud denoising using a generalized error metric
Effective removal of noises from raw point clouds while preserving geometric features is the key challenge for point cloud denoising. To address this problem, we propose a novel method that jointly optimizes the point positions and normals. To preserve geometric features, our formulation uses a generalized robust error metric to enforce piecewise smoothness of the normal vector field as well as consistency between point positions and normals. By varying the parameter of the error metric, we gradually increase its non-convexity to guide the optimization towards a desirable solution. By combining alternating minimization with a majorization-minimization strategy, we develop a numerical solver for the optimization which guarantees convergence. The effectiveness of our method is demonstrated by extensive comparisons with previous works.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.