用于骨组织工程的碳纳米管增强聚乳酸/羟基磷灰石多孔支架

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Frontiers of Materials Science Pub Date : 2024-03-18 DOI:10.1007/s11706-024-0675-y
Weiwei Lan, Mingbo Wang, Zhenjun Lv, Jun Li, Fuying Chen, Ziwei Liang, Di Huang, Xiaochun Wei, Weiyi Chen
{"title":"用于骨组织工程的碳纳米管增强聚乳酸/羟基磷灰石多孔支架","authors":"Weiwei Lan,&nbsp;Mingbo Wang,&nbsp;Zhenjun Lv,&nbsp;Jun Li,&nbsp;Fuying Chen,&nbsp;Ziwei Liang,&nbsp;Di Huang,&nbsp;Xiaochun Wei,&nbsp;Weiyi Chen","doi":"10.1007/s11706-024-0675-y","DOIUrl":null,"url":null,"abstract":"<div><p>In the field of bone defect repair, critical requirements for favorable cytocompatibility and optimal mechanical properties have propelled research efforts towards the development of composite materials. In this study, carbon nanotubes/polylactic acid/hydroxyapatite (CNTs/PLA/HA) scaffolds with different contents (0.5, 1, 1.5 and 2 wt.%) of CNTs were prepared by the thermally induced phase separation (TIPS) method. The results revealed that the composite scaffolds had uniform pores with high porosities over 68% and high through performances. The addition of CNTs significantly enhanced the mechanical properties of resulted PLA/HA, in which the 1.5 wt.% CNTs/PLA/HA composite scaffold demonstrated the optimum mechanical behaviors with the bending elastic modulus of (868.5 ± 12.34) MPa, the tensile elastic modulus of (209.51 ± 12.73) MPa, and the tensile strength of (3.26 ± 0.61) MPa. Furthermore, L929 cells on the 1.5 wt.% CNTs/PLA/HA scaffold displayed good spreading performance and favorable cytocompatibility. Therefore, it is expected that the 1.5 wt.% CNTs/PLA/HA scaffold has potential applications in bone tissue engineering.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon nanotubes-reinforced polylactic acid/hydroxyapatite porous scaffolds for bone tissue engineering\",\"authors\":\"Weiwei Lan,&nbsp;Mingbo Wang,&nbsp;Zhenjun Lv,&nbsp;Jun Li,&nbsp;Fuying Chen,&nbsp;Ziwei Liang,&nbsp;Di Huang,&nbsp;Xiaochun Wei,&nbsp;Weiyi Chen\",\"doi\":\"10.1007/s11706-024-0675-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the field of bone defect repair, critical requirements for favorable cytocompatibility and optimal mechanical properties have propelled research efforts towards the development of composite materials. In this study, carbon nanotubes/polylactic acid/hydroxyapatite (CNTs/PLA/HA) scaffolds with different contents (0.5, 1, 1.5 and 2 wt.%) of CNTs were prepared by the thermally induced phase separation (TIPS) method. The results revealed that the composite scaffolds had uniform pores with high porosities over 68% and high through performances. The addition of CNTs significantly enhanced the mechanical properties of resulted PLA/HA, in which the 1.5 wt.% CNTs/PLA/HA composite scaffold demonstrated the optimum mechanical behaviors with the bending elastic modulus of (868.5 ± 12.34) MPa, the tensile elastic modulus of (209.51 ± 12.73) MPa, and the tensile strength of (3.26 ± 0.61) MPa. Furthermore, L929 cells on the 1.5 wt.% CNTs/PLA/HA scaffold displayed good spreading performance and favorable cytocompatibility. Therefore, it is expected that the 1.5 wt.% CNTs/PLA/HA scaffold has potential applications in bone tissue engineering.</p></div>\",\"PeriodicalId\":572,\"journal\":{\"name\":\"Frontiers of Materials Science\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11706-024-0675-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-024-0675-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在骨缺损修复领域,对良好细胞相容性和最佳机械性能的关键要求推动了复合材料的研究工作。本研究采用热诱导相分离(TIPS)法制备了不同CNT含量(0.5、1、1.5和2 wt.%)的碳纳米管/聚乳酸/羟基磷灰石(CNTs/PLA/HA)支架。结果表明,复合支架具有均匀的孔隙,孔隙率超过 68%,通过性能高。CNTs 的加入显著提高了聚乳酸/羟乙基纤维的力学性能,其中 1.5 wt.% CNTs/PLA/HA 复合支架的力学性能最佳,弯曲弹性模量为(868.5 ± 12.34)兆帕,拉伸弹性模量为(209.51 ± 12.73)兆帕,拉伸强度为(3.26 ± 0.61)兆帕。此外,1.5 wt.% CNTs/PLA/HA 支架上的 L929 细胞显示出良好的铺展性能和细胞相容性。因此,1.5 wt.% CNTs/PLA/HA 支架有望在骨组织工程中得到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carbon nanotubes-reinforced polylactic acid/hydroxyapatite porous scaffolds for bone tissue engineering

In the field of bone defect repair, critical requirements for favorable cytocompatibility and optimal mechanical properties have propelled research efforts towards the development of composite materials. In this study, carbon nanotubes/polylactic acid/hydroxyapatite (CNTs/PLA/HA) scaffolds with different contents (0.5, 1, 1.5 and 2 wt.%) of CNTs were prepared by the thermally induced phase separation (TIPS) method. The results revealed that the composite scaffolds had uniform pores with high porosities over 68% and high through performances. The addition of CNTs significantly enhanced the mechanical properties of resulted PLA/HA, in which the 1.5 wt.% CNTs/PLA/HA composite scaffold demonstrated the optimum mechanical behaviors with the bending elastic modulus of (868.5 ± 12.34) MPa, the tensile elastic modulus of (209.51 ± 12.73) MPa, and the tensile strength of (3.26 ± 0.61) MPa. Furthermore, L929 cells on the 1.5 wt.% CNTs/PLA/HA scaffold displayed good spreading performance and favorable cytocompatibility. Therefore, it is expected that the 1.5 wt.% CNTs/PLA/HA scaffold has potential applications in bone tissue engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Materials Science
Frontiers of Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.20
自引率
3.70%
发文量
515
期刊介绍: Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community. The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to): Biomaterials including biomimetics and biomineralization; Nano materials; Polymers and composites; New metallic materials; Advanced ceramics; Materials modeling and computation; Frontier materials synthesis and characterization; Novel methods for materials manufacturing; Materials performance; Materials applications in energy, information and biotechnology.
期刊最新文献
Revealing effects of powder reuse for LPBF-fabricated NiTi shape memory alloys Construction of a novel fluorescent nanoenzyme based on lanthanides for tumor theranostics In vitro evaluation of Zn–10Mg–xHA composites with the core–shell structure Femtosecond laser-induced graphene for temperature and ultrasensitive flexible strain sensing Adsorption and photocatalytic degradation performances of methyl orange-imprinted polysiloxane particles using TiO2 as matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1