通过无监督多维表型发现囊性纤维化患者特征和暴露基因组关联

IF 0.5 4区 医学 Q4 RESPIRATORY SYSTEM Revue des maladies respiratoires Pub Date : 2024-03-01 DOI:10.1016/j.rmr.2024.01.038
M. Leemans , R. Epaud , P. De Carli , C. Dehillotte , L. Lemonnier , T. Benoussaid , A. Coman , I. Coll , S. Lanone , E. Audureau
{"title":"通过无监督多维表型发现囊性纤维化患者特征和暴露基因组关联","authors":"M. Leemans ,&nbsp;R. Epaud ,&nbsp;P. De Carli ,&nbsp;C. Dehillotte ,&nbsp;L. Lemonnier ,&nbsp;T. Benoussaid ,&nbsp;A. Coman ,&nbsp;I. Coll ,&nbsp;S. Lanone ,&nbsp;E. Audureau","doi":"10.1016/j.rmr.2024.01.038","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>Cystic fibrosis (CF) is a genetic disorder that affects the respiratory and digestive systems. CF patients exhibit considerable variation in their symptoms and disease progression, suggesting complex genotype–phenotype relationships that may involve environmental factors. This study aimed to use unsupervised clustering analyses to identify distinct profiles and trajectories of CF patients, while also assessing their associations with various environmental factors.</p></div><div><h3>Methods</h3><p>Data from the French CF Registry, which covers 90% of CF patients in France and provides comprehensive health information for monitoring and research purposes, were utilized. By employing dimensionality reduction and clustering techniques, such as self-organizing maps (SOMs), reverse graph embedding (DDRTree algorithm, ClinTrajAn), and trajectory analyses (latent class analysis) based on longitudinal lung function tests, patients were grouped based on their clinical characteristics.</p></div><div><h3>Results</h3><p>Preliminary findings revealed the existence of different subgroups among CF children and adult patients, characterized by significant differences in overall health status, decline in lung function, comorbidities, incidence of infections, and exposure to environmental factors like passive smoking. Additionally, the study investigates the connections between CF profiles and air pollution at the geographic level of French departments.</p></div><div><h3>Conclusion</h3><p>Applying clustering techniques to large medical datasets reveals valuable insights into the impact of the environment on the physiological and pathological processes of CF. By uncovering distinct patient profiles, this approach can optimize treatment strategies and improve patient outcomes.</p></div>","PeriodicalId":21548,"journal":{"name":"Revue des maladies respiratoires","volume":"41 3","pages":"Page 200"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncovering cystic fibrosis patient profiles and exposome associations through unsupervised multidimensional phenotyping\",\"authors\":\"M. Leemans ,&nbsp;R. Epaud ,&nbsp;P. De Carli ,&nbsp;C. Dehillotte ,&nbsp;L. Lemonnier ,&nbsp;T. Benoussaid ,&nbsp;A. Coman ,&nbsp;I. Coll ,&nbsp;S. Lanone ,&nbsp;E. Audureau\",\"doi\":\"10.1016/j.rmr.2024.01.038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><p>Cystic fibrosis (CF) is a genetic disorder that affects the respiratory and digestive systems. CF patients exhibit considerable variation in their symptoms and disease progression, suggesting complex genotype–phenotype relationships that may involve environmental factors. This study aimed to use unsupervised clustering analyses to identify distinct profiles and trajectories of CF patients, while also assessing their associations with various environmental factors.</p></div><div><h3>Methods</h3><p>Data from the French CF Registry, which covers 90% of CF patients in France and provides comprehensive health information for monitoring and research purposes, were utilized. By employing dimensionality reduction and clustering techniques, such as self-organizing maps (SOMs), reverse graph embedding (DDRTree algorithm, ClinTrajAn), and trajectory analyses (latent class analysis) based on longitudinal lung function tests, patients were grouped based on their clinical characteristics.</p></div><div><h3>Results</h3><p>Preliminary findings revealed the existence of different subgroups among CF children and adult patients, characterized by significant differences in overall health status, decline in lung function, comorbidities, incidence of infections, and exposure to environmental factors like passive smoking. Additionally, the study investigates the connections between CF profiles and air pollution at the geographic level of French departments.</p></div><div><h3>Conclusion</h3><p>Applying clustering techniques to large medical datasets reveals valuable insights into the impact of the environment on the physiological and pathological processes of CF. By uncovering distinct patient profiles, this approach can optimize treatment strategies and improve patient outcomes.</p></div>\",\"PeriodicalId\":21548,\"journal\":{\"name\":\"Revue des maladies respiratoires\",\"volume\":\"41 3\",\"pages\":\"Page 200\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revue des maladies respiratoires\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0761842524000639\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue des maladies respiratoires","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0761842524000639","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

摘要

导言囊性纤维化(CF)是一种影响呼吸和消化系统的遗传性疾病。囊性纤维化患者在症状和疾病进展方面表现出相当大的差异,这表明基因型与表型之间存在复杂的关系,其中可能涉及环境因素。本研究旨在使用无监督聚类分析来识别 CF 患者的独特特征和轨迹,同时评估其与各种环境因素的关联。方法 本研究使用了法国 CF 登记处的数据,该登记处涵盖了法国 90% 的 CF 患者,为监测和研究目的提供了全面的健康信息。通过采用降维和聚类技术,如自组织图(SOMs)、反向图嵌入(DDRTree 算法,ClinTrajAn)以及基于纵向肺功能测试的轨迹分析(潜类分析),根据患者的临床特征对其进行分组。结果初步研究结果显示,CF 儿童和成人患者中存在不同的亚组,其特点是在总体健康状况、肺功能下降、合并症、感染发生率以及接触被动吸烟等环境因素方面存在显著差异。此外,该研究还在法国各省的地理层面上调查了CF特征与空气污染之间的联系。 结论将聚类技术应用于大型医疗数据集,可以揭示环境对CF生理和病理过程影响的宝贵见解。通过发现不同患者的特征,这种方法可以优化治疗策略并改善患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uncovering cystic fibrosis patient profiles and exposome associations through unsupervised multidimensional phenotyping

Introduction

Cystic fibrosis (CF) is a genetic disorder that affects the respiratory and digestive systems. CF patients exhibit considerable variation in their symptoms and disease progression, suggesting complex genotype–phenotype relationships that may involve environmental factors. This study aimed to use unsupervised clustering analyses to identify distinct profiles and trajectories of CF patients, while also assessing their associations with various environmental factors.

Methods

Data from the French CF Registry, which covers 90% of CF patients in France and provides comprehensive health information for monitoring and research purposes, were utilized. By employing dimensionality reduction and clustering techniques, such as self-organizing maps (SOMs), reverse graph embedding (DDRTree algorithm, ClinTrajAn), and trajectory analyses (latent class analysis) based on longitudinal lung function tests, patients were grouped based on their clinical characteristics.

Results

Preliminary findings revealed the existence of different subgroups among CF children and adult patients, characterized by significant differences in overall health status, decline in lung function, comorbidities, incidence of infections, and exposure to environmental factors like passive smoking. Additionally, the study investigates the connections between CF profiles and air pollution at the geographic level of French departments.

Conclusion

Applying clustering techniques to large medical datasets reveals valuable insights into the impact of the environment on the physiological and pathological processes of CF. By uncovering distinct patient profiles, this approach can optimize treatment strategies and improve patient outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revue des maladies respiratoires
Revue des maladies respiratoires 医学-呼吸系统
CiteScore
1.10
自引率
16.70%
发文量
168
审稿时长
4-8 weeks
期刊介绍: La Revue des Maladies Respiratoires est l''organe officiel d''expression scientifique de la Société de Pneumologie de Langue Française (SPLF). Il s''agit d''un média professionnel francophone, à vocation internationale et accessible ici. La Revue des Maladies Respiratoires est un outil de formation professionnelle post-universitaire pour l''ensemble de la communauté pneumologique francophone. Elle publie sur son site différentes variétés d''articles scientifiques concernant la Pneumologie : - Editoriaux, - Articles originaux, - Revues générales, - Articles de synthèses, - Recommandations d''experts et textes de consensus, - Séries thématiques, - Cas cliniques, - Articles « images et diagnostics », - Fiches techniques, - Lettres à la rédaction.
期刊最新文献
[Evaluation of local anesthesia with buffered Xylocaine in pleural procedures: The DOULAPLUX study]. Editorial board Contents Sommaire Bénéfice de la simulation dans l’apprentissage de l’endoscopie bronchique des internes et jeunes médecins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1