V. Vasseur , A. Cezard , A. Caumon , A. Guillon , N. Tsapis , S. Le Poder , S. Messaoudi , M. Si-Tahar
{"title":"开发抗流感病毒感染的琥珀酸类似物和制剂","authors":"V. Vasseur , A. Cezard , A. Caumon , A. Guillon , N. Tsapis , S. Le Poder , S. Messaoudi , M. Si-Tahar","doi":"10.1016/j.rmr.2024.01.049","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>One of the top global causes of death worldwide is respiratory viral infections. Among these, influenza virus-related infections cause deadly epidemics and pandemics. Each year, seasonal influenza infects more than 1 billion people (i.e. ∼20% of the world's population) and results in approximately 500,000 deaths. Vaccination efficacy can be impaired by viral intrinsic antigenic drift and the efficiency of drugs targeting directly influenza viruses is largely disputed. Hence, the development of innovative options is required to better treat influenza. In that regard, we recently demonstrated the antiviral activity of succinate (EMBO J., 2022) as well as of “C2”, two host metabolites. In this project, our objectives are to synthesize succinate-derived drugs against influenza viruses, select the best candidates and test them in vitro and in vivo, and finally formulate them into dry powders for direct lung delivery.</p></div><div><h3>Methods</h3><p>A series of compounds are synthesized by a structure-activity relationship strategy. Various chemical modifications will be introduced in the “hit” compound in the aim to identify analogues with high activity and good druggability.</p></div><div><h3>Results</h3><p>A preliminary screening of a short series of commercially available analogues using human bronchial epithelial cells led to the identification of three new active compounds (coined “S1”, “S10” and “S11”). All have an antiviral and anti-inflammatory effect more potent than the natural metabolites succinate and C2. In an in vivo model of influenza pneumonia, mice treated at day 2 post-infection with these analogues resisted better than non-treated or C2-treated animals to a lethal dose of influenza virus (survival rate: 85%, 0%, and 50% respectively).</p></div><div><h3>Conclusion</h3><p>Our study will pave the way for the development of appropriate “drug-and-devices” that will help to administer these succinate analogues directly into the respiratory tract. This project is funded through an ANR program.</p></div>","PeriodicalId":21548,"journal":{"name":"Revue des maladies respiratoires","volume":"41 3","pages":"Page 205"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of succinate-based analogues and formulations against influenza virus infection\",\"authors\":\"V. Vasseur , A. Cezard , A. Caumon , A. Guillon , N. Tsapis , S. Le Poder , S. Messaoudi , M. Si-Tahar\",\"doi\":\"10.1016/j.rmr.2024.01.049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><p>One of the top global causes of death worldwide is respiratory viral infections. Among these, influenza virus-related infections cause deadly epidemics and pandemics. Each year, seasonal influenza infects more than 1 billion people (i.e. ∼20% of the world's population) and results in approximately 500,000 deaths. Vaccination efficacy can be impaired by viral intrinsic antigenic drift and the efficiency of drugs targeting directly influenza viruses is largely disputed. Hence, the development of innovative options is required to better treat influenza. In that regard, we recently demonstrated the antiviral activity of succinate (EMBO J., 2022) as well as of “C2”, two host metabolites. In this project, our objectives are to synthesize succinate-derived drugs against influenza viruses, select the best candidates and test them in vitro and in vivo, and finally formulate them into dry powders for direct lung delivery.</p></div><div><h3>Methods</h3><p>A series of compounds are synthesized by a structure-activity relationship strategy. Various chemical modifications will be introduced in the “hit” compound in the aim to identify analogues with high activity and good druggability.</p></div><div><h3>Results</h3><p>A preliminary screening of a short series of commercially available analogues using human bronchial epithelial cells led to the identification of three new active compounds (coined “S1”, “S10” and “S11”). All have an antiviral and anti-inflammatory effect more potent than the natural metabolites succinate and C2. In an in vivo model of influenza pneumonia, mice treated at day 2 post-infection with these analogues resisted better than non-treated or C2-treated animals to a lethal dose of influenza virus (survival rate: 85%, 0%, and 50% respectively).</p></div><div><h3>Conclusion</h3><p>Our study will pave the way for the development of appropriate “drug-and-devices” that will help to administer these succinate analogues directly into the respiratory tract. This project is funded through an ANR program.</p></div>\",\"PeriodicalId\":21548,\"journal\":{\"name\":\"Revue des maladies respiratoires\",\"volume\":\"41 3\",\"pages\":\"Page 205\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revue des maladies respiratoires\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0761842524000743\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue des maladies respiratoires","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0761842524000743","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
Development of succinate-based analogues and formulations against influenza virus infection
Introduction
One of the top global causes of death worldwide is respiratory viral infections. Among these, influenza virus-related infections cause deadly epidemics and pandemics. Each year, seasonal influenza infects more than 1 billion people (i.e. ∼20% of the world's population) and results in approximately 500,000 deaths. Vaccination efficacy can be impaired by viral intrinsic antigenic drift and the efficiency of drugs targeting directly influenza viruses is largely disputed. Hence, the development of innovative options is required to better treat influenza. In that regard, we recently demonstrated the antiviral activity of succinate (EMBO J., 2022) as well as of “C2”, two host metabolites. In this project, our objectives are to synthesize succinate-derived drugs against influenza viruses, select the best candidates and test them in vitro and in vivo, and finally formulate them into dry powders for direct lung delivery.
Methods
A series of compounds are synthesized by a structure-activity relationship strategy. Various chemical modifications will be introduced in the “hit” compound in the aim to identify analogues with high activity and good druggability.
Results
A preliminary screening of a short series of commercially available analogues using human bronchial epithelial cells led to the identification of three new active compounds (coined “S1”, “S10” and “S11”). All have an antiviral and anti-inflammatory effect more potent than the natural metabolites succinate and C2. In an in vivo model of influenza pneumonia, mice treated at day 2 post-infection with these analogues resisted better than non-treated or C2-treated animals to a lethal dose of influenza virus (survival rate: 85%, 0%, and 50% respectively).
Conclusion
Our study will pave the way for the development of appropriate “drug-and-devices” that will help to administer these succinate analogues directly into the respiratory tract. This project is funded through an ANR program.
期刊介绍:
La Revue des Maladies Respiratoires est l''organe officiel d''expression scientifique de la Société de Pneumologie de Langue Française (SPLF). Il s''agit d''un média professionnel francophone, à vocation internationale et accessible ici.
La Revue des Maladies Respiratoires est un outil de formation professionnelle post-universitaire pour l''ensemble de la communauté pneumologique francophone. Elle publie sur son site différentes variétés d''articles scientifiques concernant la Pneumologie :
- Editoriaux,
- Articles originaux,
- Revues générales,
- Articles de synthèses,
- Recommandations d''experts et textes de consensus,
- Séries thématiques,
- Cas cliniques,
- Articles « images et diagnostics »,
- Fiches techniques,
- Lettres à la rédaction.