将极端事件归因纳入民用基础设施的气候变化适应:方法、效益和研究需求

Yating Zhang , Bilal M. Ayyub , Juan F. Fung , Zachary M. Labe
{"title":"将极端事件归因纳入民用基础设施的气候变化适应:方法、效益和研究需求","authors":"Yating Zhang ,&nbsp;Bilal M. Ayyub ,&nbsp;Juan F. Fung ,&nbsp;Zachary M. Labe","doi":"10.1016/j.rcns.2024.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>In the last decade, the detection and attribution science that links climate change to extreme weather and climate events has emerged as a growing field of research with an increasing body of literature. This paper overviews the methods for extreme event attribution (EEA) and discusses the new insights that EEA provides for infrastructure adaptation. We found that EEA can inform stakeholders about current climate risk, support vulnerability-based and hazard-based adaptations, assist in the development of cost-effective adaptation strategies, and enhance justice and equity in the allocation of adaptation resources. As engineering practice shifts from a retrospective approach to a proactive, forward-looking risk management strategy, EEA can be used together with climate projections to enhance the comprehensiveness of decision making, including planning and preparing for unprecedented extreme events. Additionally, attribution assessment can be more useful for adaptation planning when the exposure and vulnerability of communities to past events are analyzed, and future changes in the probability of extreme events are evaluated. Given large uncertainties inherent in event attribution and climate projections, future research should examine the sensitivity of engineering design to climate model uncertainties, and adapt engineering practice, including building codes, to uncertain future conditions. While this study focuses on adaptation planning, EEA can also be a useful tool for informing and enhancing decisions related to climate mitigation.</p></div>","PeriodicalId":101077,"journal":{"name":"Resilient Cities and Structures","volume":"3 1","pages":"Pages 103-113"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277274162400005X/pdfft?md5=610b5f5962d80f07407d5404ba40234c&pid=1-s2.0-S277274162400005X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Incorporating extreme event attribution into climate change adaptation for civil infrastructure: Methods, benefits, and research needs\",\"authors\":\"Yating Zhang ,&nbsp;Bilal M. Ayyub ,&nbsp;Juan F. Fung ,&nbsp;Zachary M. Labe\",\"doi\":\"10.1016/j.rcns.2024.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the last decade, the detection and attribution science that links climate change to extreme weather and climate events has emerged as a growing field of research with an increasing body of literature. This paper overviews the methods for extreme event attribution (EEA) and discusses the new insights that EEA provides for infrastructure adaptation. We found that EEA can inform stakeholders about current climate risk, support vulnerability-based and hazard-based adaptations, assist in the development of cost-effective adaptation strategies, and enhance justice and equity in the allocation of adaptation resources. As engineering practice shifts from a retrospective approach to a proactive, forward-looking risk management strategy, EEA can be used together with climate projections to enhance the comprehensiveness of decision making, including planning and preparing for unprecedented extreme events. Additionally, attribution assessment can be more useful for adaptation planning when the exposure and vulnerability of communities to past events are analyzed, and future changes in the probability of extreme events are evaluated. Given large uncertainties inherent in event attribution and climate projections, future research should examine the sensitivity of engineering design to climate model uncertainties, and adapt engineering practice, including building codes, to uncertain future conditions. While this study focuses on adaptation planning, EEA can also be a useful tool for informing and enhancing decisions related to climate mitigation.</p></div>\",\"PeriodicalId\":101077,\"journal\":{\"name\":\"Resilient Cities and Structures\",\"volume\":\"3 1\",\"pages\":\"Pages 103-113\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S277274162400005X/pdfft?md5=610b5f5962d80f07407d5404ba40234c&pid=1-s2.0-S277274162400005X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resilient Cities and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277274162400005X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resilient Cities and Structures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277274162400005X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去十年中,将气候变化与极端天气和气候事件联系起来的探测和归因科学已成为一个不断发展的研究领域,其文献数量也在不断增加。本文概述了极端事件归因(EEA)的方法,并讨论了 EEA 为基础设施适应提供的新见解。我们发现,极端事件归因可以让利益相关者了解当前的气候风险,支持基于脆弱性和灾害的适应措施,协助制定具有成本效益的适应战略,并提高适应资源分配的公正性和公平性。随着工程实践从回顾性方法转向主动、前瞻性的风险管理策略,环境影响评估可与气候预测一起使用,以提高决策的全面性,包括对前所未有的极端事件进行规划和准备。此外,在分析社区对过去事件的暴露程度和脆弱性以及评估极端事件发生概率的未来变化时,归因评估对适应规划更加有用。鉴于事件归因和气候预测中固有的巨大不确定性,未来的研究应检查工程设计对气候模型不确定性的敏感性,并调整工程实践,包括建筑规范,以适应不确定的未来条件。虽然这项研究的重点是适应规划,但 EEA 也可以作为一种有用的工具,为与气候减缓相关的决策提供信息并加以改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Incorporating extreme event attribution into climate change adaptation for civil infrastructure: Methods, benefits, and research needs

In the last decade, the detection and attribution science that links climate change to extreme weather and climate events has emerged as a growing field of research with an increasing body of literature. This paper overviews the methods for extreme event attribution (EEA) and discusses the new insights that EEA provides for infrastructure adaptation. We found that EEA can inform stakeholders about current climate risk, support vulnerability-based and hazard-based adaptations, assist in the development of cost-effective adaptation strategies, and enhance justice and equity in the allocation of adaptation resources. As engineering practice shifts from a retrospective approach to a proactive, forward-looking risk management strategy, EEA can be used together with climate projections to enhance the comprehensiveness of decision making, including planning and preparing for unprecedented extreme events. Additionally, attribution assessment can be more useful for adaptation planning when the exposure and vulnerability of communities to past events are analyzed, and future changes in the probability of extreme events are evaluated. Given large uncertainties inherent in event attribution and climate projections, future research should examine the sensitivity of engineering design to climate model uncertainties, and adapt engineering practice, including building codes, to uncertain future conditions. While this study focuses on adaptation planning, EEA can also be a useful tool for informing and enhancing decisions related to climate mitigation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
期刊最新文献
Automated knowledge graphs for complex systems (AutoGraCS): Applications to management of bridge networks Uncovering implicit Seismogenic associated regions towards promoting urban resilience Building Stock and Emission Models for Jakarta Key networks to create disaster resilient Smart Cities Mission: A case for remodeling India's Smart Cities Mission to include disaster resilience Landslide-oriented disaster resilience evaluation in mountainous cities: A case study in Chongqing, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1