Verena Nikeleit, Markus Maisch, James M. Byrne, Caroline Harwood, Andreas Kappler, Casey Bryce
{"title":"在富含有机物和铁(II)的条件下,古朴红单胞菌 TIE-1 的光营养铁(II)氧化作用","authors":"Verena Nikeleit, Markus Maisch, James M. Byrne, Caroline Harwood, Andreas Kappler, Casey Bryce","doi":"10.1111/1462-2920.16608","DOIUrl":null,"url":null,"abstract":"<p><i>Rhodopseudomonas palustris</i> TIE-1 grows photoautotrophically with Fe(II) as an electron donor and photoheterotrophically with a variety of organic substrates. However, it is unclear whether <i>R. palustris</i> TIE-1 conducts Fe(II) oxidation in conditions where organic substrates and Fe(II) are available simultaneously. In addition, the effect of organic co-substrates on Fe(II) oxidation rates or the identity of Fe(III) minerals formed is unknown. We incubated <i>R. palustris</i> TIE-1 with 2 mM Fe(II), amended with 0.6 mM organic co-substrate, and in the presence/absence of CO<sub>2</sub>. We found that in the absence of CO<sub>2</sub>, only the organic co-substrates acetate, lactate and pyruvate, but not Fe(II), were consumed. When CO<sub>2</sub> was present, Fe(II) and all organic substrates were consumed. Acetate, butyrate and pyruvate were consumed before Fe(II) oxidation commenced, whereas lactate and glucose were consumed at the same time as Fe(II) oxidation proceeded. Lactate, pyruvate and glucose increased the Fe(II) oxidation rate significantly (by up to threefold in the case of lactate). <sup>57</sup>Fe Mössbauer spectroscopy revealed that short-range ordered Fe(III) oxyhydroxides were formed under all conditions. This study demonstrates phototrophic Fe(II) oxidation proceeds even in the presence of organic compounds, and that the simultaneous oxidation of organic substrates can stimulate Fe(II) oxidation.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16608","citationCount":"0","resultStr":"{\"title\":\"Phototrophic Fe(II) oxidation by Rhodopseudomonas palustris TIE-1 in organic and Fe(II)-rich conditions\",\"authors\":\"Verena Nikeleit, Markus Maisch, James M. Byrne, Caroline Harwood, Andreas Kappler, Casey Bryce\",\"doi\":\"10.1111/1462-2920.16608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Rhodopseudomonas palustris</i> TIE-1 grows photoautotrophically with Fe(II) as an electron donor and photoheterotrophically with a variety of organic substrates. However, it is unclear whether <i>R. palustris</i> TIE-1 conducts Fe(II) oxidation in conditions where organic substrates and Fe(II) are available simultaneously. In addition, the effect of organic co-substrates on Fe(II) oxidation rates or the identity of Fe(III) minerals formed is unknown. We incubated <i>R. palustris</i> TIE-1 with 2 mM Fe(II), amended with 0.6 mM organic co-substrate, and in the presence/absence of CO<sub>2</sub>. We found that in the absence of CO<sub>2</sub>, only the organic co-substrates acetate, lactate and pyruvate, but not Fe(II), were consumed. When CO<sub>2</sub> was present, Fe(II) and all organic substrates were consumed. Acetate, butyrate and pyruvate were consumed before Fe(II) oxidation commenced, whereas lactate and glucose were consumed at the same time as Fe(II) oxidation proceeded. Lactate, pyruvate and glucose increased the Fe(II) oxidation rate significantly (by up to threefold in the case of lactate). <sup>57</sup>Fe Mössbauer spectroscopy revealed that short-range ordered Fe(III) oxyhydroxides were formed under all conditions. This study demonstrates phototrophic Fe(II) oxidation proceeds even in the presence of organic compounds, and that the simultaneous oxidation of organic substrates can stimulate Fe(II) oxidation.</p>\",\"PeriodicalId\":11898,\"journal\":{\"name\":\"Environmental microbiology\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16608\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16608\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16608","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
棕榈假单胞菌 TIE-1 以铁(II)为电子供体进行光自养生长,并以多种有机底物进行光异养生长。然而,目前还不清楚 R. palustris TIE-1 是否能在有机底物和铁(II)同时存在的条件下进行铁(II)氧化。此外,有机辅助底物对铁(II)氧化率的影响或形成的铁(III)矿物质的特性也不得而知。我们用 2 mM Fe(II)、0.6 mM 有机辅助底物和二氧化碳存在/不存在的情况下培养 R. palustris TIE-1。我们发现,在没有二氧化碳的情况下,只有有机辅底物乙酸盐、乳酸盐和丙酮酸盐被消耗,而 Fe(II) 却没有被消耗。当二氧化碳存在时,Fe(II)和所有有机底物都被消耗。乙酸盐、丁酸盐和丙酮酸盐在 Fe(II) 氧化开始之前被消耗,而乳酸盐和葡萄糖在 Fe(II) 氧化开始的同时被消耗。乳酸、丙酮酸和葡萄糖显著提高了铁(II)的氧化速率(乳酸的氧化速率最高可达三倍)。57Fe 莫斯鲍尔光谱显示,在所有条件下都形成了短程有序的铁(III)氧氢氧化物。这项研究表明,即使存在有机化合物,光养铁(II)氧化也能进行,而且有机底物的同时氧化也能刺激铁(II)氧化。
Phototrophic Fe(II) oxidation by Rhodopseudomonas palustris TIE-1 in organic and Fe(II)-rich conditions
Rhodopseudomonas palustris TIE-1 grows photoautotrophically with Fe(II) as an electron donor and photoheterotrophically with a variety of organic substrates. However, it is unclear whether R. palustris TIE-1 conducts Fe(II) oxidation in conditions where organic substrates and Fe(II) are available simultaneously. In addition, the effect of organic co-substrates on Fe(II) oxidation rates or the identity of Fe(III) minerals formed is unknown. We incubated R. palustris TIE-1 with 2 mM Fe(II), amended with 0.6 mM organic co-substrate, and in the presence/absence of CO2. We found that in the absence of CO2, only the organic co-substrates acetate, lactate and pyruvate, but not Fe(II), were consumed. When CO2 was present, Fe(II) and all organic substrates were consumed. Acetate, butyrate and pyruvate were consumed before Fe(II) oxidation commenced, whereas lactate and glucose were consumed at the same time as Fe(II) oxidation proceeded. Lactate, pyruvate and glucose increased the Fe(II) oxidation rate significantly (by up to threefold in the case of lactate). 57Fe Mössbauer spectroscopy revealed that short-range ordered Fe(III) oxyhydroxides were formed under all conditions. This study demonstrates phototrophic Fe(II) oxidation proceeds even in the presence of organic compounds, and that the simultaneous oxidation of organic substrates can stimulate Fe(II) oxidation.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens