非全局性车辆和动力不足水面船只的速度障碍法理论分析

IF 4.9 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Control Systems Technology Pub Date : 2024-03-19 DOI:10.1109/TCST.2024.3375023
Aurora Haraldsen;Martin Syre Wiig;Kristin Ytterstad Pettersen
{"title":"非全局性车辆和动力不足水面船只的速度障碍法理论分析","authors":"Aurora Haraldsen;Martin Syre Wiig;Kristin Ytterstad Pettersen","doi":"10.1109/TCST.2024.3375023","DOIUrl":null,"url":null,"abstract":"Collision avoidance (CA) systems are pivotal for enabling vehicles to autonomously complete tasks in environments containing obstacles. With its low computational burden and underlying flexibility, the velocity obstacle (VO) algorithm presents a favorable method to avoid collisions, which is based on representing obstacles in the velocity space. In this study, we use the VO principle to form a reactive strategy for vehicles to avoid collisions with dynamic obstacles, which is applied to two different classes of systems, specifically nonholonomic vehicles and underactuated surface vessels. Instead of producing velocity references, the algorithm outputs collision-free directions, thus circumventing the need for explicitly controlling the vehicle speed. Moreover, the majority of existing VO approaches are only supported by simulations and experiments of specific CA scenarios, and the few studies that include some theoretical assurance are based on assumptions that cannot be guaranteed in the general case. In this article, we consider factors such as vehicle dynamics and constraints in a rigorous analysis of the algorithm. We analytically derive conditions ensuring feasibility of the avoidance maneuvers and overall safety of the vehicle, which provide intuitive requirements on the parameters of the algorithm. The theoretical results are supported through simulations and experiments of the strategy applied to a nonholonomic vehicle and an underactuated marine vessel.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 5","pages":"1801-1816"},"PeriodicalIF":4.9000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Theoretical Analysis of the Velocity Obstacle Method for Nonholonomic Vehicles and Underactuated Surface Vessels\",\"authors\":\"Aurora Haraldsen;Martin Syre Wiig;Kristin Ytterstad Pettersen\",\"doi\":\"10.1109/TCST.2024.3375023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collision avoidance (CA) systems are pivotal for enabling vehicles to autonomously complete tasks in environments containing obstacles. With its low computational burden and underlying flexibility, the velocity obstacle (VO) algorithm presents a favorable method to avoid collisions, which is based on representing obstacles in the velocity space. In this study, we use the VO principle to form a reactive strategy for vehicles to avoid collisions with dynamic obstacles, which is applied to two different classes of systems, specifically nonholonomic vehicles and underactuated surface vessels. Instead of producing velocity references, the algorithm outputs collision-free directions, thus circumventing the need for explicitly controlling the vehicle speed. Moreover, the majority of existing VO approaches are only supported by simulations and experiments of specific CA scenarios, and the few studies that include some theoretical assurance are based on assumptions that cannot be guaranteed in the general case. In this article, we consider factors such as vehicle dynamics and constraints in a rigorous analysis of the algorithm. We analytically derive conditions ensuring feasibility of the avoidance maneuvers and overall safety of the vehicle, which provide intuitive requirements on the parameters of the algorithm. The theoretical results are supported through simulations and experiments of the strategy applied to a nonholonomic vehicle and an underactuated marine vessel.\",\"PeriodicalId\":13103,\"journal\":{\"name\":\"IEEE Transactions on Control Systems Technology\",\"volume\":\"32 5\",\"pages\":\"1801-1816\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Control Systems Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10475570/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10475570/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

避撞(CA)系统对于车辆在含有障碍物的环境中自主完成任务至关重要。速度障碍物(VO)算法具有低计算负担和基本灵活性,是一种基于在速度空间中表示障碍物的有利避撞方法。在本研究中,我们利用 VO 原理为车辆制定了一种避免与动态障碍物相撞的反应策略,并将其应用于两类不同的系统,特别是非自主车辆和动力不足的水面舰艇。该算法不产生速度参考,而是输出无碰撞方向,从而避免了明确控制车辆速度的需要。此外,现有的大多数 VO 方法都只得到了特定 CA 场景的模拟和实验的支持,而少数包含一些理论保证的研究都是基于在一般情况下无法保证的假设。在本文中,我们在对算法进行严格分析时考虑了车辆动态和约束条件等因素。我们通过分析推导出确保避让机动可行性和车辆整体安全性的条件,这些条件为算法参数提供了直观的要求。通过对应用于非全局性车辆和动力不足的船舶的策略进行模拟和实验,为理论结果提供了支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Theoretical Analysis of the Velocity Obstacle Method for Nonholonomic Vehicles and Underactuated Surface Vessels
Collision avoidance (CA) systems are pivotal for enabling vehicles to autonomously complete tasks in environments containing obstacles. With its low computational burden and underlying flexibility, the velocity obstacle (VO) algorithm presents a favorable method to avoid collisions, which is based on representing obstacles in the velocity space. In this study, we use the VO principle to form a reactive strategy for vehicles to avoid collisions with dynamic obstacles, which is applied to two different classes of systems, specifically nonholonomic vehicles and underactuated surface vessels. Instead of producing velocity references, the algorithm outputs collision-free directions, thus circumventing the need for explicitly controlling the vehicle speed. Moreover, the majority of existing VO approaches are only supported by simulations and experiments of specific CA scenarios, and the few studies that include some theoretical assurance are based on assumptions that cannot be guaranteed in the general case. In this article, we consider factors such as vehicle dynamics and constraints in a rigorous analysis of the algorithm. We analytically derive conditions ensuring feasibility of the avoidance maneuvers and overall safety of the vehicle, which provide intuitive requirements on the parameters of the algorithm. The theoretical results are supported through simulations and experiments of the strategy applied to a nonholonomic vehicle and an underactuated marine vessel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Control Systems Technology
IEEE Transactions on Control Systems Technology 工程技术-工程:电子与电气
CiteScore
10.70
自引率
2.10%
发文量
218
审稿时长
6.7 months
期刊介绍: The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.
期刊最新文献
2023-2024 Index IEEE Transactions on Control Systems Technology Vol. 32 Table of Contents Predictive Control for Autonomous Driving With Uncertain, Multimodal Predictions High-Speed Interception Multicopter Control by Image-Based Visual Servoing Real-Time Mixed-Integer Quadratic Programming for Vehicle Decision-Making and Motion Planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1