{"title":"砖臼结构对 SiCp/Al 复合材料断裂行为的影响:有限元分析","authors":"Xiang Gao, Xiaonan Lu, Xuexi Zhang, Mingfang Qian, Aibin Li, Huan Wang, Cheng Liu, Bowen Gong, Wenting Ouyang, Hua-Xin Peng","doi":"10.1007/s10443-024-10221-4","DOIUrl":null,"url":null,"abstract":"<div><p>The metal-matrix composites (MMCs) with biomimetic bricks-and-mortar architectures have been experimentally demonstrated to exhibit excellent strength-ductility match. Here, biomimetic bricks-and-mortar architecture mimicking masonry bonds was introduced in numerical models. By translating perpendicular layers on stack bond model, 1/2 running and running bond models were established. The results reveal that elongation of running bond model is the highest (4.77%), which is ∼ 1.5 times as that of stack type model. The strength of these models is similar (330 ± 1 MPa). However, it is the trade-off between load bearing capacity and fracture of SiC particles. In the stack bond model, over a small junction layer area led to a relatively straight crack path and thus lower elongation. On the contrary, running bond model shows a zigzag main crack. So, the main crack deflects frequently with high energy consumption. Furthermore, crack deflection into matrix cell increases propagation resistance, leading to the highest elongation in the running bond model. Therefore, the biomimetic bricks-and-mortar architecture delays and deflects main crack propagation. These findings have significant implication for the architecture design of advanced composite materials.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 4","pages":"1457 - 1473"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Bricks-and-Mortar Architecture on Fracture Behavior of SiCp/Al Composite: A Finite Element Analysis\",\"authors\":\"Xiang Gao, Xiaonan Lu, Xuexi Zhang, Mingfang Qian, Aibin Li, Huan Wang, Cheng Liu, Bowen Gong, Wenting Ouyang, Hua-Xin Peng\",\"doi\":\"10.1007/s10443-024-10221-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The metal-matrix composites (MMCs) with biomimetic bricks-and-mortar architectures have been experimentally demonstrated to exhibit excellent strength-ductility match. Here, biomimetic bricks-and-mortar architecture mimicking masonry bonds was introduced in numerical models. By translating perpendicular layers on stack bond model, 1/2 running and running bond models were established. The results reveal that elongation of running bond model is the highest (4.77%), which is ∼ 1.5 times as that of stack type model. The strength of these models is similar (330 ± 1 MPa). However, it is the trade-off between load bearing capacity and fracture of SiC particles. In the stack bond model, over a small junction layer area led to a relatively straight crack path and thus lower elongation. On the contrary, running bond model shows a zigzag main crack. So, the main crack deflects frequently with high energy consumption. Furthermore, crack deflection into matrix cell increases propagation resistance, leading to the highest elongation in the running bond model. Therefore, the biomimetic bricks-and-mortar architecture delays and deflects main crack propagation. These findings have significant implication for the architecture design of advanced composite materials.</p></div>\",\"PeriodicalId\":468,\"journal\":{\"name\":\"Applied Composite Materials\",\"volume\":\"31 4\",\"pages\":\"1457 - 1473\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10443-024-10221-4\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10443-024-10221-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Effect of Bricks-and-Mortar Architecture on Fracture Behavior of SiCp/Al Composite: A Finite Element Analysis
The metal-matrix composites (MMCs) with biomimetic bricks-and-mortar architectures have been experimentally demonstrated to exhibit excellent strength-ductility match. Here, biomimetic bricks-and-mortar architecture mimicking masonry bonds was introduced in numerical models. By translating perpendicular layers on stack bond model, 1/2 running and running bond models were established. The results reveal that elongation of running bond model is the highest (4.77%), which is ∼ 1.5 times as that of stack type model. The strength of these models is similar (330 ± 1 MPa). However, it is the trade-off between load bearing capacity and fracture of SiC particles. In the stack bond model, over a small junction layer area led to a relatively straight crack path and thus lower elongation. On the contrary, running bond model shows a zigzag main crack. So, the main crack deflects frequently with high energy consumption. Furthermore, crack deflection into matrix cell increases propagation resistance, leading to the highest elongation in the running bond model. Therefore, the biomimetic bricks-and-mortar architecture delays and deflects main crack propagation. These findings have significant implication for the architecture design of advanced composite materials.
期刊介绍:
Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes.
Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.