{"title":"天眼:连续处理移动物体上的移动空间关键词查询","authors":"Mariam Orabi, Zaher Al Aghbari, Ibrahim Kamel","doi":"10.1007/s10707-024-00512-0","DOIUrl":null,"url":null,"abstract":"<p>With the spread of GPS-equipped portable devices, Location-Based Services (LBSs) flourished. Some crucial LBSs require real-time processing of moving spatial-keyword queries over moving objects, such as an ambulance seeking for volunteers. The research community proposed solutions for scenarios assuming that either the queries or the queried objects are moving, but solutions are needed assuming that both are moving. This work proposes SkyEye; a model that efficiently processes moving continuous top-k spatial-keyword queries over moving objects in a directed streets network. SkyEye computes queries’ answer sets for time intervals and smartly updates the answer sets based on the recent history. Novel optimization techniques and indexing structures are leveraged to improve SkyEye’s efficiency and scalability. The mathematical foundations of these optimization techniques are thoroughly demonstrated. Finally, extensive experiments showed that SkyEye has significant performance improvements in terms of efficiency, scalability, and accuracy compared to a baseline model.</p>","PeriodicalId":55109,"journal":{"name":"Geoinformatica","volume":"20 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SkyEye: continuous processing of moving spatial-keyword queries over moving objects\",\"authors\":\"Mariam Orabi, Zaher Al Aghbari, Ibrahim Kamel\",\"doi\":\"10.1007/s10707-024-00512-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the spread of GPS-equipped portable devices, Location-Based Services (LBSs) flourished. Some crucial LBSs require real-time processing of moving spatial-keyword queries over moving objects, such as an ambulance seeking for volunteers. The research community proposed solutions for scenarios assuming that either the queries or the queried objects are moving, but solutions are needed assuming that both are moving. This work proposes SkyEye; a model that efficiently processes moving continuous top-k spatial-keyword queries over moving objects in a directed streets network. SkyEye computes queries’ answer sets for time intervals and smartly updates the answer sets based on the recent history. Novel optimization techniques and indexing structures are leveraged to improve SkyEye’s efficiency and scalability. The mathematical foundations of these optimization techniques are thoroughly demonstrated. Finally, extensive experiments showed that SkyEye has significant performance improvements in terms of efficiency, scalability, and accuracy compared to a baseline model.</p>\",\"PeriodicalId\":55109,\"journal\":{\"name\":\"Geoinformatica\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoinformatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10707-024-00512-0\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoinformatica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10707-024-00512-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
SkyEye: continuous processing of moving spatial-keyword queries over moving objects
With the spread of GPS-equipped portable devices, Location-Based Services (LBSs) flourished. Some crucial LBSs require real-time processing of moving spatial-keyword queries over moving objects, such as an ambulance seeking for volunteers. The research community proposed solutions for scenarios assuming that either the queries or the queried objects are moving, but solutions are needed assuming that both are moving. This work proposes SkyEye; a model that efficiently processes moving continuous top-k spatial-keyword queries over moving objects in a directed streets network. SkyEye computes queries’ answer sets for time intervals and smartly updates the answer sets based on the recent history. Novel optimization techniques and indexing structures are leveraged to improve SkyEye’s efficiency and scalability. The mathematical foundations of these optimization techniques are thoroughly demonstrated. Finally, extensive experiments showed that SkyEye has significant performance improvements in terms of efficiency, scalability, and accuracy compared to a baseline model.
期刊介绍:
GeoInformatica is located at the confluence of two rapidly advancing domains: Computer Science and Geographic Information Science; nowadays, Earth studies use more and more sophisticated computing theory and tools, and computer processing of Earth observations through Geographic Information Systems (GIS) attracts a great deal of attention from governmental, industrial and research worlds.
This journal aims to promote the most innovative results coming from the research in the field of computer science applied to geographic information systems. Thus, GeoInformatica provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of the use of computer science for spatial studies.