{"title":"具有冻结核心电子的 N-可表示单电子还原密度矩阵重构。","authors":"Sizhuo Yu, Jean Michel Gillet","doi":"10.1107/S2053273324001645","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in quantum crystallography have shown that, beyond conventional charge density refinement, a one-electron reduced density matrix (1-RDM) satisfying N-representability conditions can be reconstructed using jointly experimental X-ray structure factors and directional Compton profiles (DCP) through semidefinite programming. So far, such reconstruction methods for 1-RDM, not constrained to idempotency, have been tested only on a toy model system (CO<sub>2</sub>). In this work, a new method is assessed on crystalline urea [CO(NH<sub>2</sub>)<sub>2</sub>] using static (0 K) and dynamic (50 K) artificial experimental data. An improved model, including symmetry constraints and frozen core-electron contribution, is introduced to better handle the increasing system complexity. Reconstructed 1-RDMs, deformation densities and DCP anisotropy are analysed, and it is demonstrated that the changes in the model significantly improve the reconstruction quality, even when there is insufficient information and data corruption. The robustness of the model and the strategy are thus shown to be well adapted to address the reconstruction problem from actual experimental scattering data.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"249-257"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11067946/pdf/","citationCount":"0","resultStr":"{\"title\":\"N-representable one-electron reduced density matrix reconstruction with frozen core electrons.\",\"authors\":\"Sizhuo Yu, Jean Michel Gillet\",\"doi\":\"10.1107/S2053273324001645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent advances in quantum crystallography have shown that, beyond conventional charge density refinement, a one-electron reduced density matrix (1-RDM) satisfying N-representability conditions can be reconstructed using jointly experimental X-ray structure factors and directional Compton profiles (DCP) through semidefinite programming. So far, such reconstruction methods for 1-RDM, not constrained to idempotency, have been tested only on a toy model system (CO<sub>2</sub>). In this work, a new method is assessed on crystalline urea [CO(NH<sub>2</sub>)<sub>2</sub>] using static (0 K) and dynamic (50 K) artificial experimental data. An improved model, including symmetry constraints and frozen core-electron contribution, is introduced to better handle the increasing system complexity. Reconstructed 1-RDMs, deformation densities and DCP anisotropy are analysed, and it is demonstrated that the changes in the model significantly improve the reconstruction quality, even when there is insufficient information and data corruption. The robustness of the model and the strategy are thus shown to be well adapted to address the reconstruction problem from actual experimental scattering data.</p>\",\"PeriodicalId\":106,\"journal\":{\"name\":\"Acta Crystallographica Section A: Foundations and Advances\",\"volume\":\" \",\"pages\":\"249-257\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11067946/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section A: Foundations and Advances\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1107/S2053273324001645\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section A: Foundations and Advances","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1107/S2053273324001645","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
量子晶体学的最新进展表明,除了传统的电荷密度细化外,还可以利用联合实验 X 射线结构因子和定向康普顿剖面(DCP),通过半定量编程重建满足 N 代表性条件的单电子还原密度矩阵(1-RDM)。迄今为止,这种不受限于幂等性的 1-RDM 重建方法只在一个玩具模型系统(CO2)上进行过测试。在这项工作中,利用静态(0 K)和动态(50 K)人工实验数据,对结晶脲[CO(NH2)2]的新方法进行了评估。为了更好地处理不断增加的系统复杂性,引入了一个改进的模型,包括对称性约束和冻结的核心电子贡献。对重建的 1-RDM、形变密度和 DCP 各向异性进行了分析,结果表明,即使在信息不足和数据损坏的情况下,模型的变化也能显著提高重建质量。因此,模型的稳健性和策略被证明非常适合解决实际实验散射数据的重建问题。
N-representable one-electron reduced density matrix reconstruction with frozen core electrons.
Recent advances in quantum crystallography have shown that, beyond conventional charge density refinement, a one-electron reduced density matrix (1-RDM) satisfying N-representability conditions can be reconstructed using jointly experimental X-ray structure factors and directional Compton profiles (DCP) through semidefinite programming. So far, such reconstruction methods for 1-RDM, not constrained to idempotency, have been tested only on a toy model system (CO2). In this work, a new method is assessed on crystalline urea [CO(NH2)2] using static (0 K) and dynamic (50 K) artificial experimental data. An improved model, including symmetry constraints and frozen core-electron contribution, is introduced to better handle the increasing system complexity. Reconstructed 1-RDMs, deformation densities and DCP anisotropy are analysed, and it is demonstrated that the changes in the model significantly improve the reconstruction quality, even when there is insufficient information and data corruption. The robustness of the model and the strategy are thus shown to be well adapted to address the reconstruction problem from actual experimental scattering data.
期刊介绍:
Acta Crystallographica Section A: Foundations and Advances publishes articles reporting advances in the theory and practice of all areas of crystallography in the broadest sense. As well as traditional crystallography, this includes nanocrystals, metacrystals, amorphous materials, quasicrystals, synchrotron and XFEL studies, coherent scattering, diffraction imaging, time-resolved studies and the structure of strain and defects in materials.
The journal has two parts, a rapid-publication Advances section and the traditional Foundations section. Articles for the Advances section are of particularly high value and impact. They receive expedited treatment and may be highlighted by an accompanying scientific commentary article and a press release. Further details are given in the November 2013 Editorial.
The central themes of the journal are, on the one hand, experimental and theoretical studies of the properties and arrangements of atoms, ions and molecules in condensed matter, periodic, quasiperiodic or amorphous, ideal or real, and, on the other, the theoretical and experimental aspects of the various methods to determine these properties and arrangements.