从脑数字减影血管造影术中识别和定位大血管闭塞的深度学习方法。

IF 2.3 4区 医学 Q3 CLINICAL NEUROLOGY Journal of Neuroimaging Pub Date : 2024-03-20 DOI:10.1111/jon.13193
Roshan Warman, PranavI. Warman, Anmol Warman, Tulio Bueso, Riichi Ota, Thomas Windisch, Gabriel Neves
{"title":"从脑数字减影血管造影术中识别和定位大血管闭塞的深度学习方法。","authors":"Roshan Warman,&nbsp;PranavI. Warman,&nbsp;Anmol Warman,&nbsp;Tulio Bueso,&nbsp;Riichi Ota,&nbsp;Thomas Windisch,&nbsp;Gabriel Neves","doi":"10.1111/jon.13193","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and purpose</h3>\n \n <p>An essential step during endovascular thrombectomy is identifying the occluded arterial vessel on a cerebral digital subtraction angiogram (DSA). We developed an algorithm that can detect and localize the position of occlusions in cerebral DSA.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We retrospectively collected cerebral DSAs from a single institution between 2018 and 2020 from 188 patients, 86 of whom suffered occlusions of the M1 and proximal M2 segments. We trained an ensemble of deep-learning models on fewer than 60 large-vessel occlusion (LVO)-positive patients. We evaluated the model on an independent test set and evaluated the truth of its predicted localizations using Intersection over Union and expert review.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>On an independent test set of 166 cerebral DSA frames with an LVO prevalence of 0.19, the model achieved a specificity of 0.95 (95% confidence interval [CI]: 0.90, 0.99), a precision of 0.7450 (95% CI: 0.64, 0.88), and a sensitivity of 0.76 (95% CI: 0.66, 0.91). The model correctly localized the LVO in at least one frame in 13 of the 14 LVO-positive patients in the test set. The model achieved a precision of 0.67 (95% CI: 0.52, 0.79), recall of 0.69 (95% CI: 0.46, 0.81), and a mean average precision of 0.75 (95% CI: 0.56, 0.91).</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>This work demonstrates that a deep learning strategy using a limited dataset can generate effective representations used to identify LVOs. Generating an expanded and more complete dataset of LVOs with obstructed LVOs is likely the best way to improve the model's ability to localize LVOs.</p>\n </section>\n </div>","PeriodicalId":16399,"journal":{"name":"Journal of Neuroimaging","volume":"34 3","pages":"366-375"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning method to identify and localize large-vessel occlusions from cerebral digital subtraction angiography\",\"authors\":\"Roshan Warman,&nbsp;PranavI. Warman,&nbsp;Anmol Warman,&nbsp;Tulio Bueso,&nbsp;Riichi Ota,&nbsp;Thomas Windisch,&nbsp;Gabriel Neves\",\"doi\":\"10.1111/jon.13193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background and purpose</h3>\\n \\n <p>An essential step during endovascular thrombectomy is identifying the occluded arterial vessel on a cerebral digital subtraction angiogram (DSA). We developed an algorithm that can detect and localize the position of occlusions in cerebral DSA.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We retrospectively collected cerebral DSAs from a single institution between 2018 and 2020 from 188 patients, 86 of whom suffered occlusions of the M1 and proximal M2 segments. We trained an ensemble of deep-learning models on fewer than 60 large-vessel occlusion (LVO)-positive patients. We evaluated the model on an independent test set and evaluated the truth of its predicted localizations using Intersection over Union and expert review.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>On an independent test set of 166 cerebral DSA frames with an LVO prevalence of 0.19, the model achieved a specificity of 0.95 (95% confidence interval [CI]: 0.90, 0.99), a precision of 0.7450 (95% CI: 0.64, 0.88), and a sensitivity of 0.76 (95% CI: 0.66, 0.91). The model correctly localized the LVO in at least one frame in 13 of the 14 LVO-positive patients in the test set. The model achieved a precision of 0.67 (95% CI: 0.52, 0.79), recall of 0.69 (95% CI: 0.46, 0.81), and a mean average precision of 0.75 (95% CI: 0.56, 0.91).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>This work demonstrates that a deep learning strategy using a limited dataset can generate effective representations used to identify LVOs. Generating an expanded and more complete dataset of LVOs with obstructed LVOs is likely the best way to improve the model's ability to localize LVOs.</p>\\n </section>\\n </div>\",\"PeriodicalId\":16399,\"journal\":{\"name\":\"Journal of Neuroimaging\",\"volume\":\"34 3\",\"pages\":\"366-375\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroimaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jon.13193\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jon.13193","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的:血管内血栓切除术的一个重要步骤是在脑数字减影血管造影(DSA)上识别闭塞的动脉血管。我们开发了一种算法,可以检测和定位脑数字减影血管造影(DSA)中闭塞血管的位置:我们回顾性地收集了 2018 年至 2020 年间来自一家机构的 188 名患者的脑 DSA,其中 86 名患者的 M1 和 M2 近段闭塞。我们在不到 60 名大血管闭塞(LVO)阳性患者身上训练了一组深度学习模型。我们在一个独立的测试集上对模型进行了评估,并使用 "交集大于联合"(Intersection over Union)和专家评论对其预测定位的真实性进行了评估:在由 166 个脑 DSA 帧组成的独立测试集中,LVO 发生率为 0.19,该模型的特异性为 0.95(95% 置信区间 [CI]:0.90, 0.99),精确度为 0.7450(95% CI:0.64, 0.88),灵敏度为 0.76(95% CI:0.66, 0.91)。在测试集中的 14 例 LVO 阳性患者中,该模型至少在 13 例患者的一帧中正确定位了 LVO。该模型的精确度为 0.67(95% CI:0.52,0.79),召回率为 0.69(95% CI:0.46,0.81),平均精确度为 0.75(95% CI:0.56,0.91):这项研究表明,使用有限数据集的深度学习策略可以生成用于识别 LVO 的有效表征。要想提高模型定位 LVO 的能力,最好的方法可能是生成一个包含阻塞性 LVO 的更完整的 LVO 数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A deep learning method to identify and localize large-vessel occlusions from cerebral digital subtraction angiography

Background and purpose

An essential step during endovascular thrombectomy is identifying the occluded arterial vessel on a cerebral digital subtraction angiogram (DSA). We developed an algorithm that can detect and localize the position of occlusions in cerebral DSA.

Methods

We retrospectively collected cerebral DSAs from a single institution between 2018 and 2020 from 188 patients, 86 of whom suffered occlusions of the M1 and proximal M2 segments. We trained an ensemble of deep-learning models on fewer than 60 large-vessel occlusion (LVO)-positive patients. We evaluated the model on an independent test set and evaluated the truth of its predicted localizations using Intersection over Union and expert review.

Results

On an independent test set of 166 cerebral DSA frames with an LVO prevalence of 0.19, the model achieved a specificity of 0.95 (95% confidence interval [CI]: 0.90, 0.99), a precision of 0.7450 (95% CI: 0.64, 0.88), and a sensitivity of 0.76 (95% CI: 0.66, 0.91). The model correctly localized the LVO in at least one frame in 13 of the 14 LVO-positive patients in the test set. The model achieved a precision of 0.67 (95% CI: 0.52, 0.79), recall of 0.69 (95% CI: 0.46, 0.81), and a mean average precision of 0.75 (95% CI: 0.56, 0.91).

Conclusion

This work demonstrates that a deep learning strategy using a limited dataset can generate effective representations used to identify LVOs. Generating an expanded and more complete dataset of LVOs with obstructed LVOs is likely the best way to improve the model's ability to localize LVOs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroimaging
Journal of Neuroimaging 医学-核医学
CiteScore
4.70
自引率
0.00%
发文量
117
审稿时长
6-12 weeks
期刊介绍: Start reading the Journal of Neuroimaging to learn the latest neurological imaging techniques. The peer-reviewed research is written in a practical clinical context, giving you the information you need on: MRI CT Carotid Ultrasound and TCD SPECT PET Endovascular Surgical Neuroradiology Functional MRI Xenon CT and other new and upcoming neuroscientific modalities.The Journal of Neuroimaging addresses the full spectrum of human nervous system disease, including stroke, neoplasia, degenerating and demyelinating disease, epilepsy, tumors, lesions, infectious disease, cerebral vascular arterial diseases, toxic-metabolic disease, psychoses, dementias, heredo-familial disease, and trauma.Offering original research, review articles, case reports, neuroimaging CPCs, and evaluations of instruments and technology relevant to the nervous system, the Journal of Neuroimaging focuses on useful clinical developments and applications, tested techniques and interpretations, patient care, diagnostics, and therapeutics. Start reading today!
期刊最新文献
Predicting glioblastoma progression using MR diffusion tensor imaging: A systematic review Nerve cross-sectional area in vincristine-induced polyneuropathy: A nerve ultrasound pilot study Comparison of antithrombogenic coated and uncoated flow diverters in ruptured and unruptured cerebral aneurysms Functional MRI and cognition in multiple sclerosis—Where are we now? Time-dependent MR diffusion analysis of functioning and nonfunctioning pituitary adenomas/pituitary neuroendocrine tumors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1