Rebecca J. Daniels , David Grenet , Christopher A. Knight
{"title":"帕金森病患者快速抓握能力受损与运动分段。","authors":"Rebecca J. Daniels , David Grenet , Christopher A. Knight","doi":"10.1016/j.humov.2024.103201","DOIUrl":null,"url":null,"abstract":"<div><p>Bradykinesia, or slow movement, is a defining symptom of Parkinson's disease (PD), but the underlying neuromechanical deficits that lead to this slowness remain unclear. People with PD often have impaired rates of motor output accompanied by disruptions in neuromuscular excitation, causing abnormal, segmented, force-time curves. Previous investigations using single-joint models indicate that agonist electromyogram (EMG) silent periods cause motor segmentation. It is unknown whether motor segmentation is evident in more anatomically complex and ecologically important tasks, such as handgrip tasks. Aim 1 was to determine how handgrip rates of force change compare between people with PD and healthy young and older adults. Aim 2 was to determine whether motor segmentation is present in handgrip force and EMG measures in people with PD. Subjects performed rapid isometric handgrip pulses to 20–60% of their maximal voluntary contraction force while EMG was collected from the grip flexors and extensors. Dependent variables included the time to 90% peak force, the peak rate of force development, the duration above 90% of peak force, the number of segments in the force-time curve, the number of EMG bursts, time to relaxation from 90% of peak force, and the peak rate of force relaxation. People with PD had longer durations and lower rates of force change than young and older adults. Six of 22 people with PD had motor segmentation. People with PD had more EMG bursts compared to healthy adults and the number of EMG bursts covaried with the number of segments. Thus, control of rapid movement in Parkinson's disease can be studied using isometric handgrip. People with PD have impaired rate control compared to healthy adults and motor segmentation can be studied in handgrip.</p></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impaired performance of rapid grip in people with Parkinson's disease and motor segmentation\",\"authors\":\"Rebecca J. Daniels , David Grenet , Christopher A. Knight\",\"doi\":\"10.1016/j.humov.2024.103201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bradykinesia, or slow movement, is a defining symptom of Parkinson's disease (PD), but the underlying neuromechanical deficits that lead to this slowness remain unclear. People with PD often have impaired rates of motor output accompanied by disruptions in neuromuscular excitation, causing abnormal, segmented, force-time curves. Previous investigations using single-joint models indicate that agonist electromyogram (EMG) silent periods cause motor segmentation. It is unknown whether motor segmentation is evident in more anatomically complex and ecologically important tasks, such as handgrip tasks. Aim 1 was to determine how handgrip rates of force change compare between people with PD and healthy young and older adults. Aim 2 was to determine whether motor segmentation is present in handgrip force and EMG measures in people with PD. Subjects performed rapid isometric handgrip pulses to 20–60% of their maximal voluntary contraction force while EMG was collected from the grip flexors and extensors. Dependent variables included the time to 90% peak force, the peak rate of force development, the duration above 90% of peak force, the number of segments in the force-time curve, the number of EMG bursts, time to relaxation from 90% of peak force, and the peak rate of force relaxation. People with PD had longer durations and lower rates of force change than young and older adults. Six of 22 people with PD had motor segmentation. People with PD had more EMG bursts compared to healthy adults and the number of EMG bursts covaried with the number of segments. Thus, control of rapid movement in Parkinson's disease can be studied using isometric handgrip. People with PD have impaired rate control compared to healthy adults and motor segmentation can be studied in handgrip.</p></div>\",\"PeriodicalId\":55046,\"journal\":{\"name\":\"Human Movement Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Movement Science\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167945724000241\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Movement Science","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167945724000241","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Impaired performance of rapid grip in people with Parkinson's disease and motor segmentation
Bradykinesia, or slow movement, is a defining symptom of Parkinson's disease (PD), but the underlying neuromechanical deficits that lead to this slowness remain unclear. People with PD often have impaired rates of motor output accompanied by disruptions in neuromuscular excitation, causing abnormal, segmented, force-time curves. Previous investigations using single-joint models indicate that agonist electromyogram (EMG) silent periods cause motor segmentation. It is unknown whether motor segmentation is evident in more anatomically complex and ecologically important tasks, such as handgrip tasks. Aim 1 was to determine how handgrip rates of force change compare between people with PD and healthy young and older adults. Aim 2 was to determine whether motor segmentation is present in handgrip force and EMG measures in people with PD. Subjects performed rapid isometric handgrip pulses to 20–60% of their maximal voluntary contraction force while EMG was collected from the grip flexors and extensors. Dependent variables included the time to 90% peak force, the peak rate of force development, the duration above 90% of peak force, the number of segments in the force-time curve, the number of EMG bursts, time to relaxation from 90% of peak force, and the peak rate of force relaxation. People with PD had longer durations and lower rates of force change than young and older adults. Six of 22 people with PD had motor segmentation. People with PD had more EMG bursts compared to healthy adults and the number of EMG bursts covaried with the number of segments. Thus, control of rapid movement in Parkinson's disease can be studied using isometric handgrip. People with PD have impaired rate control compared to healthy adults and motor segmentation can be studied in handgrip.
期刊介绍:
Human Movement Science provides a medium for publishing disciplinary and multidisciplinary studies on human movement. It brings together psychological, biomechanical and neurophysiological research on the control, organization and learning of human movement, including the perceptual support of movement. The overarching goal of the journal is to publish articles that help advance theoretical understanding of the control and organization of human movement, as well as changes therein as a function of development, learning and rehabilitation. The nature of the research reported may vary from fundamental theoretical or empirical studies to more applied studies in the fields of, for example, sport, dance and rehabilitation with the proviso that all studies have a distinct theoretical bearing. Also, reviews and meta-studies advancing the understanding of human movement are welcome.
These aims and scope imply that purely descriptive studies are not acceptable, while methodological articles are only acceptable if the methodology in question opens up new vistas in understanding the control and organization of human movement. The same holds for articles on exercise physiology, which in general are not supported, unless they speak to the control and organization of human movement. In general, it is required that the theoretical message of articles published in Human Movement Science is, to a certain extent, innovative and not dismissible as just "more of the same."