{"title":"用于个性化医疗的纳米粒子理化特性精确控制方法","authors":"Noriko Nakamura , Seiichi Ohta","doi":"10.1016/j.copbio.2024.103108","DOIUrl":null,"url":null,"abstract":"<div><p>Biomedical applications of nanoparticles (NPs) have attracted much attention. With the advancement of personalized medicine, researchers are now proposing the concept that the design of NPs needs to be optimized according to the individual patient. To realize this concept, an important question is how precisely we can tailor the physicochemical properties of NPs, such as size, shape, and surface chemistry, using current technology. This review discusses recent advances and challenges in the precise control of the size, shape, and surface chemistry of NPs. While control methods have advanced significantly over the past 20 years, the size, shape, and surface chemistry of currently available NPs vary by type, requiring careful selection based on the targeted disease, organ, and patient.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"87 ","pages":"Article 103108"},"PeriodicalIF":7.1000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise control methods of the physicochemical properties of nanoparticles for personalized medicine\",\"authors\":\"Noriko Nakamura , Seiichi Ohta\",\"doi\":\"10.1016/j.copbio.2024.103108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biomedical applications of nanoparticles (NPs) have attracted much attention. With the advancement of personalized medicine, researchers are now proposing the concept that the design of NPs needs to be optimized according to the individual patient. To realize this concept, an important question is how precisely we can tailor the physicochemical properties of NPs, such as size, shape, and surface chemistry, using current technology. This review discusses recent advances and challenges in the precise control of the size, shape, and surface chemistry of NPs. While control methods have advanced significantly over the past 20 years, the size, shape, and surface chemistry of currently available NPs vary by type, requiring careful selection based on the targeted disease, organ, and patient.</p></div>\",\"PeriodicalId\":10833,\"journal\":{\"name\":\"Current opinion in biotechnology\",\"volume\":\"87 \",\"pages\":\"Article 103108\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0958166924000442\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166924000442","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Precise control methods of the physicochemical properties of nanoparticles for personalized medicine
Biomedical applications of nanoparticles (NPs) have attracted much attention. With the advancement of personalized medicine, researchers are now proposing the concept that the design of NPs needs to be optimized according to the individual patient. To realize this concept, an important question is how precisely we can tailor the physicochemical properties of NPs, such as size, shape, and surface chemistry, using current technology. This review discusses recent advances and challenges in the precise control of the size, shape, and surface chemistry of NPs. While control methods have advanced significantly over the past 20 years, the size, shape, and surface chemistry of currently available NPs vary by type, requiring careful selection based on the targeted disease, organ, and patient.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.