{"title":"合成模拟月球正温度机制的月球碎屑-地聚合物","authors":"Usman Javed , Faiz Uddin Ahmed Shaikh , A.K.M. Samsur Rahman","doi":"10.1016/j.pss.2024.105890","DOIUrl":null,"url":null,"abstract":"<div><p>The development of lunar habitat using lunar regolith is a captivating research area for constructing lunar bases, especially after the discovery of polar ice, and molecular water on the lunar south pole. The aim of this research is to synthesize a robust lunar regolith geopolymer by fine-tuning the concentration and ratios of alkaline activators while implementing curing under lunar positive thermal regime. The geopolymer was synthesized containing lunar highlands simulant (LHS-1) and mare regolith simulant (LMS-1) at the lowest water content using sodium (Na) and potassium (K) based alkaline activators emulating positive temperature regime collected by Diviner Lunar Radiometer Experiment (DLRE). The maximum compressive strength of 41.23 MPa was achieved for highlands regolith simulant-based geopolymer containing a Na-activator with the lowest water-to-precursor ratio of 0.23. The surplus alkali cations in the geopolymer paste matrix resulted in the formation of carbonation products after reacting with atmospheric carbon dioxide. K-activator geopolymer resulted in Kalicinite which has lower thermal stability and dissolution in water, whereas sodium carbonate formed in Na-activator-based geopolymer engrained and embedded precursor particles alongside sodium-calcium aluminosilicate hydrate (N-(C)-A-S-H) gel forming more densified microstructure. Conclusively, lunar regolith geopolymer has the potential for the construction of lunar habitat. However, this study recommends synthesizing geopolymer in vacuum conditions, emulating freeze-thaw cycles for a more precise estimation of microstructural developments and evaluating other critical properties.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"244 ","pages":"Article 105890"},"PeriodicalIF":1.8000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0032063324000540/pdfft?md5=6b6a1a8d9adc16907dcbe93963814616&pid=1-s2.0-S0032063324000540-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Synthesizing lunar regolith-geopolymer emulating lunar positive temperature regime\",\"authors\":\"Usman Javed , Faiz Uddin Ahmed Shaikh , A.K.M. Samsur Rahman\",\"doi\":\"10.1016/j.pss.2024.105890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of lunar habitat using lunar regolith is a captivating research area for constructing lunar bases, especially after the discovery of polar ice, and molecular water on the lunar south pole. The aim of this research is to synthesize a robust lunar regolith geopolymer by fine-tuning the concentration and ratios of alkaline activators while implementing curing under lunar positive thermal regime. The geopolymer was synthesized containing lunar highlands simulant (LHS-1) and mare regolith simulant (LMS-1) at the lowest water content using sodium (Na) and potassium (K) based alkaline activators emulating positive temperature regime collected by Diviner Lunar Radiometer Experiment (DLRE). The maximum compressive strength of 41.23 MPa was achieved for highlands regolith simulant-based geopolymer containing a Na-activator with the lowest water-to-precursor ratio of 0.23. The surplus alkali cations in the geopolymer paste matrix resulted in the formation of carbonation products after reacting with atmospheric carbon dioxide. K-activator geopolymer resulted in Kalicinite which has lower thermal stability and dissolution in water, whereas sodium carbonate formed in Na-activator-based geopolymer engrained and embedded precursor particles alongside sodium-calcium aluminosilicate hydrate (N-(C)-A-S-H) gel forming more densified microstructure. Conclusively, lunar regolith geopolymer has the potential for the construction of lunar habitat. However, this study recommends synthesizing geopolymer in vacuum conditions, emulating freeze-thaw cycles for a more precise estimation of microstructural developments and evaluating other critical properties.</p></div>\",\"PeriodicalId\":20054,\"journal\":{\"name\":\"Planetary and Space Science\",\"volume\":\"244 \",\"pages\":\"Article 105890\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0032063324000540/pdfft?md5=6b6a1a8d9adc16907dcbe93963814616&pid=1-s2.0-S0032063324000540-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Planetary and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032063324000540\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063324000540","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Synthesizing lunar regolith-geopolymer emulating lunar positive temperature regime
The development of lunar habitat using lunar regolith is a captivating research area for constructing lunar bases, especially after the discovery of polar ice, and molecular water on the lunar south pole. The aim of this research is to synthesize a robust lunar regolith geopolymer by fine-tuning the concentration and ratios of alkaline activators while implementing curing under lunar positive thermal regime. The geopolymer was synthesized containing lunar highlands simulant (LHS-1) and mare regolith simulant (LMS-1) at the lowest water content using sodium (Na) and potassium (K) based alkaline activators emulating positive temperature regime collected by Diviner Lunar Radiometer Experiment (DLRE). The maximum compressive strength of 41.23 MPa was achieved for highlands regolith simulant-based geopolymer containing a Na-activator with the lowest water-to-precursor ratio of 0.23. The surplus alkali cations in the geopolymer paste matrix resulted in the formation of carbonation products after reacting with atmospheric carbon dioxide. K-activator geopolymer resulted in Kalicinite which has lower thermal stability and dissolution in water, whereas sodium carbonate formed in Na-activator-based geopolymer engrained and embedded precursor particles alongside sodium-calcium aluminosilicate hydrate (N-(C)-A-S-H) gel forming more densified microstructure. Conclusively, lunar regolith geopolymer has the potential for the construction of lunar habitat. However, this study recommends synthesizing geopolymer in vacuum conditions, emulating freeze-thaw cycles for a more precise estimation of microstructural developments and evaluating other critical properties.
期刊介绍:
Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered:
• Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics
• Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system
• Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating
• Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements
• Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation
• Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites
• Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind
• Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations
• Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets
• History of planetary and space research