基于力学的软组织大曲率柔性针弯曲预测模型

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Medical Engineering & Physics Pub Date : 2024-03-19 DOI:10.1016/j.medengphy.2024.104156
Yan-Jiang Zhao , Ye-Xin Jin , Chao Wen , Yong-De Zhang , He Zhang
{"title":"基于力学的软组织大曲率柔性针弯曲预测模型","authors":"Yan-Jiang Zhao ,&nbsp;Ye-Xin Jin ,&nbsp;Chao Wen ,&nbsp;Yong-De Zhang ,&nbsp;He Zhang","doi":"10.1016/j.medengphy.2024.104156","DOIUrl":null,"url":null,"abstract":"<div><p>Percutaneous insertion is one of the most common minimally invasive procedures. Compared with traditional straight rigid needles, bevel-tipped flexible needle can generate curved trajectories to avoid obstacles and sensitive organs. However, the nonlinear large deflection problem challenges the bending prediction of the needle, which dramatically influences the surgical success rate. This paper analyzed the mechanism of needle-tissue interaction, and established a mechanics-based model of the needle bending during an insertion. And then, a discretization of the bending model was adopted to accurately predict the large bending of the needle in soft tissue. Insertion experiments were conducted to validate the bending prediction model. The results showed that the large needle bending was predicted with the mean/RMSE/maximumu error of 0.42 mm / 0.26 mm / 1.08 mm, which was clinically acceptable. This proved the rationality and accuracy of the proposed model.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mechanics-based model for predicting flexible needle bending with large curvature in soft tissue\",\"authors\":\"Yan-Jiang Zhao ,&nbsp;Ye-Xin Jin ,&nbsp;Chao Wen ,&nbsp;Yong-De Zhang ,&nbsp;He Zhang\",\"doi\":\"10.1016/j.medengphy.2024.104156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Percutaneous insertion is one of the most common minimally invasive procedures. Compared with traditional straight rigid needles, bevel-tipped flexible needle can generate curved trajectories to avoid obstacles and sensitive organs. However, the nonlinear large deflection problem challenges the bending prediction of the needle, which dramatically influences the surgical success rate. This paper analyzed the mechanism of needle-tissue interaction, and established a mechanics-based model of the needle bending during an insertion. And then, a discretization of the bending model was adopted to accurately predict the large bending of the needle in soft tissue. Insertion experiments were conducted to validate the bending prediction model. The results showed that the large needle bending was predicted with the mean/RMSE/maximumu error of 0.42 mm / 0.26 mm / 1.08 mm, which was clinically acceptable. This proved the rationality and accuracy of the proposed model.</p></div>\",\"PeriodicalId\":49836,\"journal\":{\"name\":\"Medical Engineering & Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Engineering & Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350453324000572\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324000572","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

经皮插入是最常见的微创手术之一。与传统的直线刚性针相比,斜面柔性针可以产生弯曲轨迹,避开障碍物和敏感器官。然而,非线性大挠度问题对针的弯曲预测提出了挑战,极大地影响了手术成功率。本文分析了针与组织相互作用的机理,建立了基于力学的针在插入过程中的弯曲模型。然后,对弯曲模型进行离散化处理,以准确预测针在软组织中的大弯曲。插入实验验证了弯曲预测模型。结果表明,针头大弯曲预测的平均/均方根误差/最大u误差分别为 0.42 mm / 0.26 mm / 1.08 mm,临床上可以接受。这证明了所提模型的合理性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A mechanics-based model for predicting flexible needle bending with large curvature in soft tissue

Percutaneous insertion is one of the most common minimally invasive procedures. Compared with traditional straight rigid needles, bevel-tipped flexible needle can generate curved trajectories to avoid obstacles and sensitive organs. However, the nonlinear large deflection problem challenges the bending prediction of the needle, which dramatically influences the surgical success rate. This paper analyzed the mechanism of needle-tissue interaction, and established a mechanics-based model of the needle bending during an insertion. And then, a discretization of the bending model was adopted to accurately predict the large bending of the needle in soft tissue. Insertion experiments were conducted to validate the bending prediction model. The results showed that the large needle bending was predicted with the mean/RMSE/maximumu error of 0.42 mm / 0.26 mm / 1.08 mm, which was clinically acceptable. This proved the rationality and accuracy of the proposed model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical Engineering & Physics
Medical Engineering & Physics 工程技术-工程:生物医学
CiteScore
4.30
自引率
4.50%
发文量
172
审稿时长
3.0 months
期刊介绍: Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.
期刊最新文献
Monitoring focused ultrasound ablation surgery (FUAS) using echo amplitudes of the therapeutic focused transducer 3D bioheat transfer mapping reveals nanomagnetic particles effectiveness in radiofrequency hyperthermia breast cancer treatment comparing to experimental study Bone ingrowth in randomly distributed porous interbody cage during lumbar spinal fusion A method of nucleus image segmentation and counting based on TC-UNet++ and distance watershed Integrated analysis of clinical indicators and mechanical properties in cancellous bone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1