MEF-UNet:基于多尺度特征提取和融合的端到端超声图像分割算法

IF 5.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL Computerized Medical Imaging and Graphics Pub Date : 2024-03-16 DOI:10.1016/j.compmedimag.2024.102370
Mengqi Xu , Qianting Ma , Huajie Zhang , Dexing Kong , Tieyong Zeng
{"title":"MEF-UNet:基于多尺度特征提取和融合的端到端超声图像分割算法","authors":"Mengqi Xu ,&nbsp;Qianting Ma ,&nbsp;Huajie Zhang ,&nbsp;Dexing Kong ,&nbsp;Tieyong Zeng","doi":"10.1016/j.compmedimag.2024.102370","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrasound image segmentation is a challenging task due to the complexity of lesion types, fuzzy boundaries, and low-contrast images along with the presence of noises and artifacts. To address these issues, we propose an end-to-end multi-scale feature extraction and fusion network (MEF-UNet) for the automatic segmentation of ultrasound images. Specifically, we first design a selective feature extraction encoder, including detail extraction stage and structure extraction stage, to precisely capture the edge details and overall shape features of the lesions. In order to enhance the representation capacity of contextual information, we develop a context information storage module in the skip-connection section, responsible for integrating information from adjacent two-layer feature maps. In addition, we design a multi-scale feature fusion module in the decoder section to merge feature maps with different scales. Experimental results indicate that our MEF-UNet can significantly improve the segmentation results in both quantitative analysis and visual effects.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MEF-UNet: An end-to-end ultrasound image segmentation algorithm based on multi-scale feature extraction and fusion\",\"authors\":\"Mengqi Xu ,&nbsp;Qianting Ma ,&nbsp;Huajie Zhang ,&nbsp;Dexing Kong ,&nbsp;Tieyong Zeng\",\"doi\":\"10.1016/j.compmedimag.2024.102370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ultrasound image segmentation is a challenging task due to the complexity of lesion types, fuzzy boundaries, and low-contrast images along with the presence of noises and artifacts. To address these issues, we propose an end-to-end multi-scale feature extraction and fusion network (MEF-UNet) for the automatic segmentation of ultrasound images. Specifically, we first design a selective feature extraction encoder, including detail extraction stage and structure extraction stage, to precisely capture the edge details and overall shape features of the lesions. In order to enhance the representation capacity of contextual information, we develop a context information storage module in the skip-connection section, responsible for integrating information from adjacent two-layer feature maps. In addition, we design a multi-scale feature fusion module in the decoder section to merge feature maps with different scales. Experimental results indicate that our MEF-UNet can significantly improve the segmentation results in both quantitative analysis and visual effects.</p></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611124000478\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124000478","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于病变类型复杂、边界模糊、图像对比度低以及存在噪声和伪影,超声图像分割是一项具有挑战性的任务。为解决这些问题,我们提出了一种端到端的多尺度特征提取和融合网络(MEF-UNet),用于超声图像的自动分割。具体来说,我们首先设计了一个选择性特征提取编码器,包括细节提取阶段和结构提取阶段,以精确捕捉病变的边缘细节和整体形状特征。为了增强上下文信息的表示能力,我们在跳接部分开发了上下文信息存储模块,负责整合相邻两层特征图的信息。此外,我们还在解码器部分设计了一个多尺度特征融合模块,用于合并不同尺度的特征图。实验结果表明,我们的 MEF-UNet 在定量分析和视觉效果方面都能显著改善分割结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MEF-UNet: An end-to-end ultrasound image segmentation algorithm based on multi-scale feature extraction and fusion

Ultrasound image segmentation is a challenging task due to the complexity of lesion types, fuzzy boundaries, and low-contrast images along with the presence of noises and artifacts. To address these issues, we propose an end-to-end multi-scale feature extraction and fusion network (MEF-UNet) for the automatic segmentation of ultrasound images. Specifically, we first design a selective feature extraction encoder, including detail extraction stage and structure extraction stage, to precisely capture the edge details and overall shape features of the lesions. In order to enhance the representation capacity of contextual information, we develop a context information storage module in the skip-connection section, responsible for integrating information from adjacent two-layer feature maps. In addition, we design a multi-scale feature fusion module in the decoder section to merge feature maps with different scales. Experimental results indicate that our MEF-UNet can significantly improve the segmentation results in both quantitative analysis and visual effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
3.50%
发文量
71
审稿时长
26 days
期刊介绍: The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.
期刊最新文献
WISE: Efficient WSI selection for active learning in histopathology Active learning based on multi-enhanced views for classification of multiple patterns in lung ultrasound images. MRI-based vector radiomics for predicting breast cancer HER2 status and its changes after neoadjuvant therapy Distance guided generative adversarial network for explainable medical image classifications An anthropomorphic diagnosis system of pulmonary nodules using weak annotation-based deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1