Mengqi Xu , Qianting Ma , Huajie Zhang , Dexing Kong , Tieyong Zeng
{"title":"MEF-UNet:基于多尺度特征提取和融合的端到端超声图像分割算法","authors":"Mengqi Xu , Qianting Ma , Huajie Zhang , Dexing Kong , Tieyong Zeng","doi":"10.1016/j.compmedimag.2024.102370","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrasound image segmentation is a challenging task due to the complexity of lesion types, fuzzy boundaries, and low-contrast images along with the presence of noises and artifacts. To address these issues, we propose an end-to-end multi-scale feature extraction and fusion network (MEF-UNet) for the automatic segmentation of ultrasound images. Specifically, we first design a selective feature extraction encoder, including detail extraction stage and structure extraction stage, to precisely capture the edge details and overall shape features of the lesions. In order to enhance the representation capacity of contextual information, we develop a context information storage module in the skip-connection section, responsible for integrating information from adjacent two-layer feature maps. In addition, we design a multi-scale feature fusion module in the decoder section to merge feature maps with different scales. Experimental results indicate that our MEF-UNet can significantly improve the segmentation results in both quantitative analysis and visual effects.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MEF-UNet: An end-to-end ultrasound image segmentation algorithm based on multi-scale feature extraction and fusion\",\"authors\":\"Mengqi Xu , Qianting Ma , Huajie Zhang , Dexing Kong , Tieyong Zeng\",\"doi\":\"10.1016/j.compmedimag.2024.102370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ultrasound image segmentation is a challenging task due to the complexity of lesion types, fuzzy boundaries, and low-contrast images along with the presence of noises and artifacts. To address these issues, we propose an end-to-end multi-scale feature extraction and fusion network (MEF-UNet) for the automatic segmentation of ultrasound images. Specifically, we first design a selective feature extraction encoder, including detail extraction stage and structure extraction stage, to precisely capture the edge details and overall shape features of the lesions. In order to enhance the representation capacity of contextual information, we develop a context information storage module in the skip-connection section, responsible for integrating information from adjacent two-layer feature maps. In addition, we design a multi-scale feature fusion module in the decoder section to merge feature maps with different scales. Experimental results indicate that our MEF-UNet can significantly improve the segmentation results in both quantitative analysis and visual effects.</p></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611124000478\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124000478","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
MEF-UNet: An end-to-end ultrasound image segmentation algorithm based on multi-scale feature extraction and fusion
Ultrasound image segmentation is a challenging task due to the complexity of lesion types, fuzzy boundaries, and low-contrast images along with the presence of noises and artifacts. To address these issues, we propose an end-to-end multi-scale feature extraction and fusion network (MEF-UNet) for the automatic segmentation of ultrasound images. Specifically, we first design a selective feature extraction encoder, including detail extraction stage and structure extraction stage, to precisely capture the edge details and overall shape features of the lesions. In order to enhance the representation capacity of contextual information, we develop a context information storage module in the skip-connection section, responsible for integrating information from adjacent two-layer feature maps. In addition, we design a multi-scale feature fusion module in the decoder section to merge feature maps with different scales. Experimental results indicate that our MEF-UNet can significantly improve the segmentation results in both quantitative analysis and visual effects.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.