用于实现高效超级电容器性能的氮化硼(BNC)纳米级材料的最新进展

IF 33.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Progress in Materials Science Pub Date : 2024-03-15 DOI:10.1016/j.pmatsci.2024.101286
Rabia Manzar , Mohsin Saeed , Umer Shahzad , Jehan Y. Al-Humaidi , Shujah ur Rehman , Raed H. Althomali , Mohammed M. Rahman
{"title":"用于实现高效超级电容器性能的氮化硼(BNC)纳米级材料的最新进展","authors":"Rabia Manzar ,&nbsp;Mohsin Saeed ,&nbsp;Umer Shahzad ,&nbsp;Jehan Y. Al-Humaidi ,&nbsp;Shujah ur Rehman ,&nbsp;Raed H. Althomali ,&nbsp;Mohammed M. Rahman","doi":"10.1016/j.pmatsci.2024.101286","DOIUrl":null,"url":null,"abstract":"<div><p>Supercapacitors face limitations in capacitance and energy density, which are essential for addressing energy challenges and environmental concerns. The remarkable chemical and thermal stability, high mechanical strength, and tailorable bandgap of Boron Carbon Nitride (BCN) nanoscale materials have attracted increasing attention throughout the last decade. Enhancing supercapacitor performance is achievable through nano engineered BCN electrodes. This examination delves into recent progress in the utilization of BCN substances for supercapacitors, emphasizing advancements in designing structures, engineering porosity/defects, and constructing hybrid nanostructures. Finally, new avenues for investigation into innovative energy storage materials are suggested in this comprehensive review.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"144 ","pages":"Article 101286"},"PeriodicalIF":33.6000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advancements in boron carbon nitride (BNC) nanoscale materials for efficient supercapacitor performances\",\"authors\":\"Rabia Manzar ,&nbsp;Mohsin Saeed ,&nbsp;Umer Shahzad ,&nbsp;Jehan Y. Al-Humaidi ,&nbsp;Shujah ur Rehman ,&nbsp;Raed H. Althomali ,&nbsp;Mohammed M. Rahman\",\"doi\":\"10.1016/j.pmatsci.2024.101286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Supercapacitors face limitations in capacitance and energy density, which are essential for addressing energy challenges and environmental concerns. The remarkable chemical and thermal stability, high mechanical strength, and tailorable bandgap of Boron Carbon Nitride (BCN) nanoscale materials have attracted increasing attention throughout the last decade. Enhancing supercapacitor performance is achievable through nano engineered BCN electrodes. This examination delves into recent progress in the utilization of BCN substances for supercapacitors, emphasizing advancements in designing structures, engineering porosity/defects, and constructing hybrid nanostructures. Finally, new avenues for investigation into innovative energy storage materials are suggested in this comprehensive review.</p></div>\",\"PeriodicalId\":411,\"journal\":{\"name\":\"Progress in Materials Science\",\"volume\":\"144 \",\"pages\":\"Article 101286\"},\"PeriodicalIF\":33.6000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079642524000550\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642524000550","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

[显示省略]
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent advancements in boron carbon nitride (BNC) nanoscale materials for efficient supercapacitor performances

Supercapacitors face limitations in capacitance and energy density, which are essential for addressing energy challenges and environmental concerns. The remarkable chemical and thermal stability, high mechanical strength, and tailorable bandgap of Boron Carbon Nitride (BCN) nanoscale materials have attracted increasing attention throughout the last decade. Enhancing supercapacitor performance is achievable through nano engineered BCN electrodes. This examination delves into recent progress in the utilization of BCN substances for supercapacitors, emphasizing advancements in designing structures, engineering porosity/defects, and constructing hybrid nanostructures. Finally, new avenues for investigation into innovative energy storage materials are suggested in this comprehensive review.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Materials Science
Progress in Materials Science 工程技术-材料科学:综合
CiteScore
59.60
自引率
0.80%
发文量
101
审稿时长
11.4 months
期刊介绍: Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications. The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms. Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC). Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.
期刊最新文献
Electrothermally activated soft materials: Mechanisms, methods and applications Photothermal fabrics for solar-driven seawater desalination Editorial Board Quantum dots@layered double hydroxides: Emerging nanocomposites for multifaceted applications Thermoelectric materials and applications in buildings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1