基于宽深网络的模糊情感推理模型,含个人信息,用于人机交互中的意图理解

IF 7.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Annual Reviews in Control Pub Date : 2024-01-01 DOI:10.1016/j.arcontrol.2024.100951
Min Li , Luefeng Chen , Min Wu , Kaoru Hirota , Witold Pedrycz
{"title":"基于宽深网络的模糊情感推理模型,含个人信息,用于人机交互中的意图理解","authors":"Min Li ,&nbsp;Luefeng Chen ,&nbsp;Min Wu ,&nbsp;Kaoru Hirota ,&nbsp;Witold Pedrycz","doi":"10.1016/j.arcontrol.2024.100951","DOIUrl":null,"url":null,"abstract":"<div><p>A broad-deep fusion network-based fuzzy emotional inference model with personal information (BDFEI) is proposed for emotional intention understanding in human–robot interaction. It aims to understand students’ intentions in the university teaching scene. Initially, we employ convolution and maximum pooling for feature extraction. Subsequently, we apply the ridge regression algorithm for emotional behavior recognition, which effectively mitigates the impact of complex network structures and slow network updates often associated with deep learning. Moreover, we utilize multivariate analysis of variance to identify the key personal information factors influencing intentions and calculate their influence coefficients. Finally, a fuzzy inference method is employed to gain a comprehensive understanding of intentions. Our experimental results demonstrate the effectiveness of the BDFEI model. When compared to existing models, namely FDNNSA, ResNet-101+GFK, and HCFS, the BDFEI model achieved superior accuracy on the FABO database, surpassing them by 12.21%, 1.89%, and 0.78%, respectively. Furthermore, our self-built database experiments yielded an impressive 82.00% accuracy in intention understanding, confirming the efficacy of our emotional intention inference model.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"57 ","pages":"Article 100951"},"PeriodicalIF":7.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broad-deep network-based fuzzy emotional inference model with personal information for intention understanding in human–robot interaction\",\"authors\":\"Min Li ,&nbsp;Luefeng Chen ,&nbsp;Min Wu ,&nbsp;Kaoru Hirota ,&nbsp;Witold Pedrycz\",\"doi\":\"10.1016/j.arcontrol.2024.100951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A broad-deep fusion network-based fuzzy emotional inference model with personal information (BDFEI) is proposed for emotional intention understanding in human–robot interaction. It aims to understand students’ intentions in the university teaching scene. Initially, we employ convolution and maximum pooling for feature extraction. Subsequently, we apply the ridge regression algorithm for emotional behavior recognition, which effectively mitigates the impact of complex network structures and slow network updates often associated with deep learning. Moreover, we utilize multivariate analysis of variance to identify the key personal information factors influencing intentions and calculate their influence coefficients. Finally, a fuzzy inference method is employed to gain a comprehensive understanding of intentions. Our experimental results demonstrate the effectiveness of the BDFEI model. When compared to existing models, namely FDNNSA, ResNet-101+GFK, and HCFS, the BDFEI model achieved superior accuracy on the FABO database, surpassing them by 12.21%, 1.89%, and 0.78%, respectively. Furthermore, our self-built database experiments yielded an impressive 82.00% accuracy in intention understanding, confirming the efficacy of our emotional intention inference model.</p></div>\",\"PeriodicalId\":50750,\"journal\":{\"name\":\"Annual Reviews in Control\",\"volume\":\"57 \",\"pages\":\"Article 100951\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Reviews in Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367578824000208\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reviews in Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367578824000208","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

针对人机交互中的情感意图理解,提出了一种基于宽深融合网络的个人信息模糊情感推理模型(BDFEI)。它旨在理解大学教学场景中学生的意图。首先,我们采用卷积和最大池化技术进行特征提取。随后,我们采用脊回归算法进行情绪行为识别,有效地减轻了深度学习中常见的复杂网络结构和缓慢网络更新的影响。此外,我们还利用多元方差分析来识别影响意图的关键个人信息因素,并计算其影响系数。最后,我们还采用了模糊推理方法来全面了解意图。我们的实验结果证明了 BDFEI 模型的有效性。与现有模型(即 FDNNSA、ResNet-101+GFK 和 HCFS)相比,BDFEI 模型在 FABO 数据库上取得了更高的准确率,分别超过它们 12.21%、1.89% 和 0.78%。此外,我们的自建数据库实验在意图理解方面取得了令人印象深刻的 82.00% 的准确率,证实了我们的情感意图推理模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Broad-deep network-based fuzzy emotional inference model with personal information for intention understanding in human–robot interaction

A broad-deep fusion network-based fuzzy emotional inference model with personal information (BDFEI) is proposed for emotional intention understanding in human–robot interaction. It aims to understand students’ intentions in the university teaching scene. Initially, we employ convolution and maximum pooling for feature extraction. Subsequently, we apply the ridge regression algorithm for emotional behavior recognition, which effectively mitigates the impact of complex network structures and slow network updates often associated with deep learning. Moreover, we utilize multivariate analysis of variance to identify the key personal information factors influencing intentions and calculate their influence coefficients. Finally, a fuzzy inference method is employed to gain a comprehensive understanding of intentions. Our experimental results demonstrate the effectiveness of the BDFEI model. When compared to existing models, namely FDNNSA, ResNet-101+GFK, and HCFS, the BDFEI model achieved superior accuracy on the FABO database, surpassing them by 12.21%, 1.89%, and 0.78%, respectively. Furthermore, our self-built database experiments yielded an impressive 82.00% accuracy in intention understanding, confirming the efficacy of our emotional intention inference model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Reviews in Control
Annual Reviews in Control 工程技术-自动化与控制系统
CiteScore
19.00
自引率
2.10%
发文量
53
审稿时长
36 days
期刊介绍: The field of Control is changing very fast now with technology-driven “societal grand challenges” and with the deployment of new digital technologies. The aim of Annual Reviews in Control is to provide comprehensive and visionary views of the field of Control, by publishing the following types of review articles: Survey Article: Review papers on main methodologies or technical advances adding considerable technical value to the state of the art. Note that papers which purely rely on mechanistic searches and lack comprehensive analysis providing a clear contribution to the field will be rejected. Vision Article: Cutting-edge and emerging topics with visionary perspective on the future of the field or how it will bridge multiple disciplines, and Tutorial research Article: Fundamental guides for future studies.
期刊最新文献
Editorial Board Analysis and design of model predictive control frameworks for dynamic operation—An overview Advances in controller design of pacemakers for pacing control: A comprehensive review Recent advances in path integral control for trajectory optimization: An overview in theoretical and algorithmic perspectives Analyzing stability in 2D systems via LMIs: From pioneering to recent contributions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1