Vasudev Vivekanand Nayak, Vijayavenkataraman Sanjairaj, Rakesh Kumar Behera, James E. Smay, Nikhil Gupta, Paulo G. Coelho, Lukasz Witek
{"title":"用于骨组织再生的聚乳酸/β-磷酸三钙复合材料的直接喷墨写入:概念验证研究。","authors":"Vasudev Vivekanand Nayak, Vijayavenkataraman Sanjairaj, Rakesh Kumar Behera, James E. Smay, Nikhil Gupta, Paulo G. Coelho, Lukasz Witek","doi":"10.1002/jbm.b.35402","DOIUrl":null,"url":null,"abstract":"<p>There is an ever-evolving need of customized, anatomic-specific grafting materials for bone regeneration. More specifically, biocompatible and osteoconductive materials, that may be configured dynamically to fit and fill defects, through the application of an external stimulus. The objective of this study was to establish a basis for the development of direct inkjet writing (DIW)-based shape memory polymer-ceramic composites for bone tissue regeneration applications and to establish material behavior under thermomechanical loading. Polymer-ceramic (polylactic acid [PLA]/β-tricalcium phosphate [β-TCP]) colloidal gels were prepared of different w/w ratios (90/10, 80/20, 70/30, 60/40, and 50/50) through polymer dissolution in acetone (15% w/v). Cytocompatibility was analyzed through Presto Blue assays. Rheological properties of the colloidal gels were measured to determine shear-thinning capabilities. Gels were then extruded through a custom-built DIW printer. Space filling constructs of the gels were printed and subjected to thermomechanical characterization to measure shape fixity (<i>R</i><sub>f</sub>) and shape recovery (<i>R</i><sub>r</sub>) ratios through five successive shape memory cycles. The polymer-ceramic composite gels exhibited shear-thinning capabilities for extrusion through a nozzle for DIW. A significant increase in cellular viability was observed with the addition of β-TCP particles within the polymer matrix relative to pure PLA. Shape memory effect in the printed constructs was repeatable up to 4 cycles followed by permanent deformation. While further research on scaffold macro-/micro-geometries, and engineered porosities are warranted, this proof-of-concept study suggested suitability of this polymer-ceramic material and the DIW 3D printing workflow for the production of customized, patient specific constructs for bone tissue engineering.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct inkjet writing of polylactic acid/β-tricalcium phosphate composites for bone tissue regeneration: A proof-of-concept study\",\"authors\":\"Vasudev Vivekanand Nayak, Vijayavenkataraman Sanjairaj, Rakesh Kumar Behera, James E. Smay, Nikhil Gupta, Paulo G. Coelho, Lukasz Witek\",\"doi\":\"10.1002/jbm.b.35402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There is an ever-evolving need of customized, anatomic-specific grafting materials for bone regeneration. More specifically, biocompatible and osteoconductive materials, that may be configured dynamically to fit and fill defects, through the application of an external stimulus. The objective of this study was to establish a basis for the development of direct inkjet writing (DIW)-based shape memory polymer-ceramic composites for bone tissue regeneration applications and to establish material behavior under thermomechanical loading. Polymer-ceramic (polylactic acid [PLA]/β-tricalcium phosphate [β-TCP]) colloidal gels were prepared of different w/w ratios (90/10, 80/20, 70/30, 60/40, and 50/50) through polymer dissolution in acetone (15% w/v). Cytocompatibility was analyzed through Presto Blue assays. Rheological properties of the colloidal gels were measured to determine shear-thinning capabilities. Gels were then extruded through a custom-built DIW printer. Space filling constructs of the gels were printed and subjected to thermomechanical characterization to measure shape fixity (<i>R</i><sub>f</sub>) and shape recovery (<i>R</i><sub>r</sub>) ratios through five successive shape memory cycles. The polymer-ceramic composite gels exhibited shear-thinning capabilities for extrusion through a nozzle for DIW. A significant increase in cellular viability was observed with the addition of β-TCP particles within the polymer matrix relative to pure PLA. Shape memory effect in the printed constructs was repeatable up to 4 cycles followed by permanent deformation. While further research on scaffold macro-/micro-geometries, and engineered porosities are warranted, this proof-of-concept study suggested suitability of this polymer-ceramic material and the DIW 3D printing workflow for the production of customized, patient specific constructs for bone tissue engineering.</p>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35402\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35402","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Direct inkjet writing of polylactic acid/β-tricalcium phosphate composites for bone tissue regeneration: A proof-of-concept study
There is an ever-evolving need of customized, anatomic-specific grafting materials for bone regeneration. More specifically, biocompatible and osteoconductive materials, that may be configured dynamically to fit and fill defects, through the application of an external stimulus. The objective of this study was to establish a basis for the development of direct inkjet writing (DIW)-based shape memory polymer-ceramic composites for bone tissue regeneration applications and to establish material behavior under thermomechanical loading. Polymer-ceramic (polylactic acid [PLA]/β-tricalcium phosphate [β-TCP]) colloidal gels were prepared of different w/w ratios (90/10, 80/20, 70/30, 60/40, and 50/50) through polymer dissolution in acetone (15% w/v). Cytocompatibility was analyzed through Presto Blue assays. Rheological properties of the colloidal gels were measured to determine shear-thinning capabilities. Gels were then extruded through a custom-built DIW printer. Space filling constructs of the gels were printed and subjected to thermomechanical characterization to measure shape fixity (Rf) and shape recovery (Rr) ratios through five successive shape memory cycles. The polymer-ceramic composite gels exhibited shear-thinning capabilities for extrusion through a nozzle for DIW. A significant increase in cellular viability was observed with the addition of β-TCP particles within the polymer matrix relative to pure PLA. Shape memory effect in the printed constructs was repeatable up to 4 cycles followed by permanent deformation. While further research on scaffold macro-/micro-geometries, and engineered porosities are warranted, this proof-of-concept study suggested suitability of this polymer-ceramic material and the DIW 3D printing workflow for the production of customized, patient specific constructs for bone tissue engineering.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.