{"title":"双分支卷积神经网络及其用于绘制矿产远景图的事后解释能力","authors":"Fanfan Yang, Renguang Zuo, Yihui Xiong, Ying Xu, Jiaxin Nie, Gubin Zhang","doi":"10.1007/s11004-024-10137-6","DOIUrl":null,"url":null,"abstract":"<p>The purpose of mineral prospectivity mapping (MPM) is to discover unknown mineral deposits by means of fusing multisource prospecting information. In recent years, with rapid advancements in artificial intelligence, deep learning algorithms (DLAs) as a groundbreaking technique have exhibited outstanding capabilities in geoscience. However, conventional DLAs for MPM face certain challenges in feature extraction and the fusion of multimodal prospecting data. Moreover, opaque DLAs lead to an insufficient understanding of the predictive results by experts. In this study, a dual-branch convolutional neural network (DBCNN) and its post hoc interpretability were jointly constructed to map gold prospectivity in western Henan Province of China. In particular, channel and spatial attention modules were integrated into two branches to complement the respective advantages of multichannel and high spatial prospecting data for MPM. The Shapley additive explanations (SHAP) framework was then adopted to explain the predictive results by exploring the feature contributions. The comparative experiments illustrated that DBCNN can enhance feature representation and fusion abilities to improve the performance of MPM compared to conventional DLAs. The high-probability areas delineated by the DBCNN model exhibited close spatial relevance with known gold deposits, and the SHAP further confirmed the reliability of the predictive result obtained by the DBCNN model, thereby guiding future gold exploration in this study area.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Branch Convolutional Neural Network and Its Post Hoc Interpretability for Mapping Mineral Prospectivity\",\"authors\":\"Fanfan Yang, Renguang Zuo, Yihui Xiong, Ying Xu, Jiaxin Nie, Gubin Zhang\",\"doi\":\"10.1007/s11004-024-10137-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The purpose of mineral prospectivity mapping (MPM) is to discover unknown mineral deposits by means of fusing multisource prospecting information. In recent years, with rapid advancements in artificial intelligence, deep learning algorithms (DLAs) as a groundbreaking technique have exhibited outstanding capabilities in geoscience. However, conventional DLAs for MPM face certain challenges in feature extraction and the fusion of multimodal prospecting data. Moreover, opaque DLAs lead to an insufficient understanding of the predictive results by experts. In this study, a dual-branch convolutional neural network (DBCNN) and its post hoc interpretability were jointly constructed to map gold prospectivity in western Henan Province of China. In particular, channel and spatial attention modules were integrated into two branches to complement the respective advantages of multichannel and high spatial prospecting data for MPM. The Shapley additive explanations (SHAP) framework was then adopted to explain the predictive results by exploring the feature contributions. The comparative experiments illustrated that DBCNN can enhance feature representation and fusion abilities to improve the performance of MPM compared to conventional DLAs. The high-probability areas delineated by the DBCNN model exhibited close spatial relevance with known gold deposits, and the SHAP further confirmed the reliability of the predictive result obtained by the DBCNN model, thereby guiding future gold exploration in this study area.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11004-024-10137-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11004-024-10137-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
矿产远景测绘(MPM)的目的是通过融合多源探矿信息来发现未知矿藏。近年来,随着人工智能的飞速发展,深度学习算法(DLA)作为一种开创性技术在地球科学领域展现出了卓越的能力。然而,用于 MPM 的传统 DLA 在特征提取和多模态探矿数据融合方面面临着一定的挑战。此外,不透明的 DLA 还会导致专家无法充分理解预测结果。本研究联合构建了双分支卷积神经网络(DBCNN)及其事后可解释性,以绘制中国河南省西部的金矿远景图。其中,信道和空间注意模块被整合为两个分支,以补充多信道和高空间探矿数据对 MPM 的各自优势。然后采用沙普利加法解释(SHAP)框架,通过探索特征贡献来解释预测结果。对比实验表明,与传统的 DLA 相比,DBCNN 可以增强特征表示和融合能力,从而提高 MPM 的性能。DBCNN 模型划定的高概率区域与已知金矿床具有密切的空间相关性,SHAP 进一步证实了 DBCNN 模型预测结果的可靠性,从而为该研究区域未来的金矿勘探提供了指导。
Dual-Branch Convolutional Neural Network and Its Post Hoc Interpretability for Mapping Mineral Prospectivity
The purpose of mineral prospectivity mapping (MPM) is to discover unknown mineral deposits by means of fusing multisource prospecting information. In recent years, with rapid advancements in artificial intelligence, deep learning algorithms (DLAs) as a groundbreaking technique have exhibited outstanding capabilities in geoscience. However, conventional DLAs for MPM face certain challenges in feature extraction and the fusion of multimodal prospecting data. Moreover, opaque DLAs lead to an insufficient understanding of the predictive results by experts. In this study, a dual-branch convolutional neural network (DBCNN) and its post hoc interpretability were jointly constructed to map gold prospectivity in western Henan Province of China. In particular, channel and spatial attention modules were integrated into two branches to complement the respective advantages of multichannel and high spatial prospecting data for MPM. The Shapley additive explanations (SHAP) framework was then adopted to explain the predictive results by exploring the feature contributions. The comparative experiments illustrated that DBCNN can enhance feature representation and fusion abilities to improve the performance of MPM compared to conventional DLAs. The high-probability areas delineated by the DBCNN model exhibited close spatial relevance with known gold deposits, and the SHAP further confirmed the reliability of the predictive result obtained by the DBCNN model, thereby guiding future gold exploration in this study area.