Jamal-Deen Musah, Siu Wing Or, Lingyan Kong, Chi-Man Lawrence Wu
{"title":"具有可控共振态的铝掺杂 Bi2Se3 纳米微粒半导体,可提高热电效率","authors":"Jamal-Deen Musah, Siu Wing Or, Lingyan Kong, Chi-Man Lawrence Wu","doi":"10.1016/j.mtener.2024.101555","DOIUrl":null,"url":null,"abstract":"The generally lower thermoelectric figure of merit (zT < 0.1) of eco-friendly BiSe semiconductors constrains the waste energy conversion efficiency in the resulting devices compared to relatively toxic BiTe. We strategically introduce an aluminium (Al) dopant to create resonance states near the Fermi level and obtain Al–BiSe nanoparticulate semiconductors with enhanced zT. As an electron feeder, these resonance states significantly improve transport properties within the Al–BiSe semiconductors. The theoretical calculation shows the creation of the resonance states by hybridizing the dopant’s -orbitals with the host’s -orbitals near the Fermi level. The Al–BiSe semiconductors effectively moderate electron concentration and Seebeck-dependent effective mass, resulting in an ultrahigh zT of 0.57 over a broad temperature range of 300–473 K. The nanoparticle size (∼20 nm) efficiently impedes the propagation of lattice vibration, leading to an ultralow total thermal conductivity of 0.399 WmK. In contrast to conventional doping approaches, our strategic resonance doping is pivotal to enhancing the thermoelectric performance of the BiSe semiconductors and providing a pathway for synthesizing other semiconductor materials.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"8 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Al–doped Bi2Se3 Nanoparticulate Semiconductors with Controlled Resonance States for Enhanced Thermoelectric Efficiency\",\"authors\":\"Jamal-Deen Musah, Siu Wing Or, Lingyan Kong, Chi-Man Lawrence Wu\",\"doi\":\"10.1016/j.mtener.2024.101555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generally lower thermoelectric figure of merit (zT < 0.1) of eco-friendly BiSe semiconductors constrains the waste energy conversion efficiency in the resulting devices compared to relatively toxic BiTe. We strategically introduce an aluminium (Al) dopant to create resonance states near the Fermi level and obtain Al–BiSe nanoparticulate semiconductors with enhanced zT. As an electron feeder, these resonance states significantly improve transport properties within the Al–BiSe semiconductors. The theoretical calculation shows the creation of the resonance states by hybridizing the dopant’s -orbitals with the host’s -orbitals near the Fermi level. The Al–BiSe semiconductors effectively moderate electron concentration and Seebeck-dependent effective mass, resulting in an ultrahigh zT of 0.57 over a broad temperature range of 300–473 K. The nanoparticle size (∼20 nm) efficiently impedes the propagation of lattice vibration, leading to an ultralow total thermal conductivity of 0.399 WmK. In contrast to conventional doping approaches, our strategic resonance doping is pivotal to enhancing the thermoelectric performance of the BiSe semiconductors and providing a pathway for synthesizing other semiconductor materials.\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101555\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101555","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Al–doped Bi2Se3 Nanoparticulate Semiconductors with Controlled Resonance States for Enhanced Thermoelectric Efficiency
The generally lower thermoelectric figure of merit (zT < 0.1) of eco-friendly BiSe semiconductors constrains the waste energy conversion efficiency in the resulting devices compared to relatively toxic BiTe. We strategically introduce an aluminium (Al) dopant to create resonance states near the Fermi level and obtain Al–BiSe nanoparticulate semiconductors with enhanced zT. As an electron feeder, these resonance states significantly improve transport properties within the Al–BiSe semiconductors. The theoretical calculation shows the creation of the resonance states by hybridizing the dopant’s -orbitals with the host’s -orbitals near the Fermi level. The Al–BiSe semiconductors effectively moderate electron concentration and Seebeck-dependent effective mass, resulting in an ultrahigh zT of 0.57 over a broad temperature range of 300–473 K. The nanoparticle size (∼20 nm) efficiently impedes the propagation of lattice vibration, leading to an ultralow total thermal conductivity of 0.399 WmK. In contrast to conventional doping approaches, our strategic resonance doping is pivotal to enhancing the thermoelectric performance of the BiSe semiconductors and providing a pathway for synthesizing other semiconductor materials.
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials