通过线性矩阵不等式方法设计随机线性系统的稀疏结构

IF 4.9 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Control Systems Technology Pub Date : 2024-03-20 DOI:10.1109/TCST.2024.3377509
Yi Guo;Ognjen Stanojev;Gabriela Hug;Tyler Holt Summers
{"title":"通过线性矩阵不等式方法设计随机线性系统的稀疏结构","authors":"Yi Guo;Ognjen Stanojev;Gabriela Hug;Tyler Holt Summers","doi":"10.1109/TCST.2024.3377509","DOIUrl":null,"url":null,"abstract":"We propose a sparsity-promoting feedback control design for stochastic linear systems with multiplicative noise. The objective is to identify an optimal sparse control architecture and optimize the closed-loop performance while stabilizing the system in the mean-square sense. Our approach approximates the nonconvex combinatorial optimization problem by minimizing various matrix norms subject to the linear matrix inequality (LMI) stability condition. We present two design problems to reduce the number of actuators and the number of sensors via a low-dimensional output. A regularized linear quadratic regulator with multiplicative (LQRm) noise optimal control problem and its convex relaxation are presented to demonstrate the tradeoff between the suboptimal closed-loop performance and the sparsity degree of control structure. Case studies on power grids for wide-area frequency control show that the proposed sparsity-promoting control can considerably reduce the number of sensors and actuators without significant loss in system performance. The sparse control architecture is robust to substantial system-level disturbances while achieving mean-square stability.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 4","pages":"1528-1535"},"PeriodicalIF":4.9000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse Structure Design for Stochastic Linear Systems via a Linear Matrix Inequality Approach\",\"authors\":\"Yi Guo;Ognjen Stanojev;Gabriela Hug;Tyler Holt Summers\",\"doi\":\"10.1109/TCST.2024.3377509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a sparsity-promoting feedback control design for stochastic linear systems with multiplicative noise. The objective is to identify an optimal sparse control architecture and optimize the closed-loop performance while stabilizing the system in the mean-square sense. Our approach approximates the nonconvex combinatorial optimization problem by minimizing various matrix norms subject to the linear matrix inequality (LMI) stability condition. We present two design problems to reduce the number of actuators and the number of sensors via a low-dimensional output. A regularized linear quadratic regulator with multiplicative (LQRm) noise optimal control problem and its convex relaxation are presented to demonstrate the tradeoff between the suboptimal closed-loop performance and the sparsity degree of control structure. Case studies on power grids for wide-area frequency control show that the proposed sparsity-promoting control can considerably reduce the number of sensors and actuators without significant loss in system performance. The sparse control architecture is robust to substantial system-level disturbances while achieving mean-square stability.\",\"PeriodicalId\":13103,\"journal\":{\"name\":\"IEEE Transactions on Control Systems Technology\",\"volume\":\"32 4\",\"pages\":\"1528-1535\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Control Systems Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10476598/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10476598/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种针对具有乘法噪声的随机线性系统的稀疏性促进反馈控制设计。我们的目标是确定最佳稀疏控制结构,优化闭环性能,同时在均方意义上稳定系统。我们的方法是通过在线性矩阵不等式(LMI)稳定性条件下最小化各种矩阵规范来近似非凸组合优化问题。我们提出了两个设计问题,以通过低维输出减少执行器数量和传感器数量。我们提出了带乘法(LQRm)噪声的正则化线性二次调节器最优控制问题及其凸松弛问题,以证明次优闭环性能与控制结构稀疏程度之间的权衡。对用于广域频率控制的电网进行的案例研究表明,所提出的稀疏性促进控制可以大大减少传感器和执行器的数量,而不会显著降低系统性能。稀疏控制结构对大量系统级干扰具有鲁棒性,同时还能实现均方稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparse Structure Design for Stochastic Linear Systems via a Linear Matrix Inequality Approach
We propose a sparsity-promoting feedback control design for stochastic linear systems with multiplicative noise. The objective is to identify an optimal sparse control architecture and optimize the closed-loop performance while stabilizing the system in the mean-square sense. Our approach approximates the nonconvex combinatorial optimization problem by minimizing various matrix norms subject to the linear matrix inequality (LMI) stability condition. We present two design problems to reduce the number of actuators and the number of sensors via a low-dimensional output. A regularized linear quadratic regulator with multiplicative (LQRm) noise optimal control problem and its convex relaxation are presented to demonstrate the tradeoff between the suboptimal closed-loop performance and the sparsity degree of control structure. Case studies on power grids for wide-area frequency control show that the proposed sparsity-promoting control can considerably reduce the number of sensors and actuators without significant loss in system performance. The sparse control architecture is robust to substantial system-level disturbances while achieving mean-square stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Control Systems Technology
IEEE Transactions on Control Systems Technology 工程技术-工程:电子与电气
CiteScore
10.70
自引率
2.10%
发文量
218
审稿时长
6.7 months
期刊介绍: The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.
期刊最新文献
2023-2024 Index IEEE Transactions on Control Systems Technology Vol. 32 Table of Contents Predictive Control for Autonomous Driving With Uncertain, Multimodal Predictions High-Speed Interception Multicopter Control by Image-Based Visual Servoing Real-Time Mixed-Integer Quadratic Programming for Vehicle Decision-Making and Motion Planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1