优化国际空间站上乌拉干实验中指向勘测目标的科学设备

Q2 Computer Science Gyroscopy and Navigation Pub Date : 2024-03-23 DOI:10.1134/s207510872470007x
M. Yu. Belyaev, P. A. Borovikhin, A. M. Esakov, D. Yu. Karavaev, I. V. Rasskazov
{"title":"优化国际空间站上乌拉干实验中指向勘测目标的科学设备","authors":"M. Yu. Belyaev, P. A. Borovikhin, A. M. Esakov, D. Yu. Karavaev, I. V. Rasskazov","doi":"10.1134/s207510872470007x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The aim of the Uragan space experiment on board the International Space Station (ISS) is to adjust the scientific equipment and improve the methods for monitoring various objects and phenomena on the Earth. Part of this scientific equipment is already operated on board the station, and the other part is planned to be delivered in the orbit soon. In contrast to the Russian orbital stations Salyut and Mir, the ISS was not designed for pointing the installed equipment at the survey targets, because the gyrodines used on the American segment for the ISS attitude control had a too small kinematic momentum. For this reason, special methods and devices had to be developed for pointing the Uragan scientific equipment at the survey targets. This paper considers the methods for pointing the scientific equipment, which would optimize the research program of the Uragan experiment on board the ISS.</p>","PeriodicalId":38999,"journal":{"name":"Gyroscopy and Navigation","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Scientific Equipment Pointing at Survey Targets in the Uragan Experiment On Board the ISS\",\"authors\":\"M. Yu. Belyaev, P. A. Borovikhin, A. M. Esakov, D. Yu. Karavaev, I. V. Rasskazov\",\"doi\":\"10.1134/s207510872470007x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The aim of the Uragan space experiment on board the International Space Station (ISS) is to adjust the scientific equipment and improve the methods for monitoring various objects and phenomena on the Earth. Part of this scientific equipment is already operated on board the station, and the other part is planned to be delivered in the orbit soon. In contrast to the Russian orbital stations Salyut and Mir, the ISS was not designed for pointing the installed equipment at the survey targets, because the gyrodines used on the American segment for the ISS attitude control had a too small kinematic momentum. For this reason, special methods and devices had to be developed for pointing the Uragan scientific equipment at the survey targets. This paper considers the methods for pointing the scientific equipment, which would optimize the research program of the Uragan experiment on board the ISS.</p>\",\"PeriodicalId\":38999,\"journal\":{\"name\":\"Gyroscopy and Navigation\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gyroscopy and Navigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s207510872470007x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gyroscopy and Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s207510872470007x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在国际空间站(ISS)上进行 Uragan 空间实验的目的是调整科学设备和改进监测 地球上各种物体和现象的方法。其中一部分科学设备已在空间站上运行,另一部分计划很快送入轨道。与俄罗斯的 "礼炮号 "和 "和平号 "轨道站不同,国际空间站的设计并不是为了将安装的设备指向勘测目标,因为美国部分用于国际空间站姿态控制的陀螺仪运动动量太小。因此,必须开发特殊的方法和装置,将乌拉干科学设备指向勘测目标。本文探讨了科学设备的指向方法,这将优化国际空间站上乌拉干实验的研究计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of Scientific Equipment Pointing at Survey Targets in the Uragan Experiment On Board the ISS

Abstract

The aim of the Uragan space experiment on board the International Space Station (ISS) is to adjust the scientific equipment and improve the methods for monitoring various objects and phenomena on the Earth. Part of this scientific equipment is already operated on board the station, and the other part is planned to be delivered in the orbit soon. In contrast to the Russian orbital stations Salyut and Mir, the ISS was not designed for pointing the installed equipment at the survey targets, because the gyrodines used on the American segment for the ISS attitude control had a too small kinematic momentum. For this reason, special methods and devices had to be developed for pointing the Uragan scientific equipment at the survey targets. This paper considers the methods for pointing the scientific equipment, which would optimize the research program of the Uragan experiment on board the ISS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gyroscopy and Navigation
Gyroscopy and Navigation Computer Science-Computer Science (all)
CiteScore
2.80
自引率
0.00%
发文量
6
期刊介绍: Gyroscopy and Navigation  is an international peer reviewed journal that covers the following subjects: inertial sensors, navigation and orientation systems; global satellite navigation systems; integrated INS/GNSS navigation systems; navigation in GNSS-degraded environments and indoor navigation; gravimetric systems and map-aided navigation; hydroacoustic navigation systems; navigation devices and sensors (logs, echo sounders, magnetic compasses); navigation and sonar data processing algorithms. The journal welcomes manuscripts from all countries in the English or Russian language.
期刊最新文献
Current State and Development Prospects of Fiber-Optic Gyroscopes Maritime Cybersecurity. Navigational Aspect SVD-Aided EKF for Nanosatellite Attitude Estimation Based on Kinematic and Dynamic Relations Identification of Motion Model Parameters for a Surface Ship under Disturbances Real-Time Visual-Inertial Odometry Based on Point-Line Feature Fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1