{"title":"有交变传导电流的金属导体中驻留电磁波和电子波的传播特征","authors":"M. I. Baranov","doi":"10.3103/S1068375524010022","DOIUrl":null,"url":null,"abstract":"<p>Approximate calculations were made to identify the main features of the propagation of standing transverse electromagnetic waves (EMWs) and standing longitudinal de Broglie electron waves in a homogeneous non-massive non-magnetic metallic conductor of finite dimensions (radius <i>r</i><sub>0</sub> and length <i>l</i><sub>0</sub> ⪢ <i>r</i><sub>0</sub>) with axial alternative conduction current <i>i</i><sub>0</sub>(<i>t</i>) of different amplitude–time parameters. Relations were obtained for the calculation estimation of averaged propagation velocities of standing transverse EMWs and standing longitudinal de Broglie electron waves in the metal (alloy) of the specified conductor. It was demonstrated that quantized standing transverse EMWs emerging in the finite-sized metallic conductor significantly differ from ordinary transverse EMWs propagating in conducting media of unlimited dimensions. An important characteristic of the standing transverse EMWs in the considered conductor is that their axial electric field intensity leads in phase their azimuthal magnetic field intensity by an angle of π/2. It was found that, in the standing transverse EMWs in the investigated conductor, the energy of the electric field is only converted into the energy of their magnetic field and vice versa. Therefore, the standing transverse EMWs do not transfer electromagnetic energy fluxes along the metal (alloy) of the considered conductor.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 1","pages":"69 - 74"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Features of Propagation of Standing Electromagnetic and Electron Waves in a Metallic Conductor with Alternating Conduction Current\",\"authors\":\"M. I. Baranov\",\"doi\":\"10.3103/S1068375524010022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Approximate calculations were made to identify the main features of the propagation of standing transverse electromagnetic waves (EMWs) and standing longitudinal de Broglie electron waves in a homogeneous non-massive non-magnetic metallic conductor of finite dimensions (radius <i>r</i><sub>0</sub> and length <i>l</i><sub>0</sub> ⪢ <i>r</i><sub>0</sub>) with axial alternative conduction current <i>i</i><sub>0</sub>(<i>t</i>) of different amplitude–time parameters. Relations were obtained for the calculation estimation of averaged propagation velocities of standing transverse EMWs and standing longitudinal de Broglie electron waves in the metal (alloy) of the specified conductor. It was demonstrated that quantized standing transverse EMWs emerging in the finite-sized metallic conductor significantly differ from ordinary transverse EMWs propagating in conducting media of unlimited dimensions. An important characteristic of the standing transverse EMWs in the considered conductor is that their axial electric field intensity leads in phase their azimuthal magnetic field intensity by an angle of π/2. It was found that, in the standing transverse EMWs in the investigated conductor, the energy of the electric field is only converted into the energy of their magnetic field and vice versa. Therefore, the standing transverse EMWs do not transfer electromagnetic energy fluxes along the metal (alloy) of the considered conductor.</p>\",\"PeriodicalId\":782,\"journal\":{\"name\":\"Surface Engineering and Applied Electrochemistry\",\"volume\":\"60 1\",\"pages\":\"69 - 74\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering and Applied Electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068375524010022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375524010022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Features of Propagation of Standing Electromagnetic and Electron Waves in a Metallic Conductor with Alternating Conduction Current
Approximate calculations were made to identify the main features of the propagation of standing transverse electromagnetic waves (EMWs) and standing longitudinal de Broglie electron waves in a homogeneous non-massive non-magnetic metallic conductor of finite dimensions (radius r0 and length l0 ⪢ r0) with axial alternative conduction current i0(t) of different amplitude–time parameters. Relations were obtained for the calculation estimation of averaged propagation velocities of standing transverse EMWs and standing longitudinal de Broglie electron waves in the metal (alloy) of the specified conductor. It was demonstrated that quantized standing transverse EMWs emerging in the finite-sized metallic conductor significantly differ from ordinary transverse EMWs propagating in conducting media of unlimited dimensions. An important characteristic of the standing transverse EMWs in the considered conductor is that their axial electric field intensity leads in phase their azimuthal magnetic field intensity by an angle of π/2. It was found that, in the standing transverse EMWs in the investigated conductor, the energy of the electric field is only converted into the energy of their magnetic field and vice versa. Therefore, the standing transverse EMWs do not transfer electromagnetic energy fluxes along the metal (alloy) of the considered conductor.
期刊介绍:
Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.