Mukesh Kumar, S. K. Tamang, R. Thanigaivelan, M. Dabi
{"title":"通过分子动力学模拟研究纳米水滴在铂表面的润湿行为","authors":"Mukesh Kumar, S. K. Tamang, R. Thanigaivelan, M. Dabi","doi":"10.3103/S1068375524010101","DOIUrl":null,"url":null,"abstract":"<p>The present paper deals with a comprehensive investigation of the wettability of the platinum surface when subjected to water nanodroplets using molecular dynamics simulation. To evaluate the wettability of a solid-liquid interface, the contact angle was analyzed varied with respect to time, temperature, and energy between the atoms and the surfaces using large-scale atomic/molecular massively parallel simulator. It is worth noting here that the research reveals a significant change in the contact angle which goes from a prominent 147.158° to a more favorable 123.65° in an incredibly brief period of 2 to 200 fs. That dynamic change highlights the platinum surface significant improvement in wettability and sheds light on the kinetics of solid-liquid interactions. The result also shows that the ambient temperature reduced from 320 to 285.5 K, and the droplet temperature increased from 2.43 to 170 K in the same temperature range along with a decrease in the total energy. This study emphasizes the progressive aspect of wettability by revealing that, as time increases, the contact angle consistently reduces. This shows the perspective on how the platinum surface becomes increasingly amenable to wetting by H<sub>2</sub>O nanodroplets.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 1","pages":"50 - 57"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Wettability Behavior of Water Nanodroplets on Platinum Surface by Molecular Dynamics Simulation\",\"authors\":\"Mukesh Kumar, S. K. Tamang, R. Thanigaivelan, M. Dabi\",\"doi\":\"10.3103/S1068375524010101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present paper deals with a comprehensive investigation of the wettability of the platinum surface when subjected to water nanodroplets using molecular dynamics simulation. To evaluate the wettability of a solid-liquid interface, the contact angle was analyzed varied with respect to time, temperature, and energy between the atoms and the surfaces using large-scale atomic/molecular massively parallel simulator. It is worth noting here that the research reveals a significant change in the contact angle which goes from a prominent 147.158° to a more favorable 123.65° in an incredibly brief period of 2 to 200 fs. That dynamic change highlights the platinum surface significant improvement in wettability and sheds light on the kinetics of solid-liquid interactions. The result also shows that the ambient temperature reduced from 320 to 285.5 K, and the droplet temperature increased from 2.43 to 170 K in the same temperature range along with a decrease in the total energy. This study emphasizes the progressive aspect of wettability by revealing that, as time increases, the contact angle consistently reduces. This shows the perspective on how the platinum surface becomes increasingly amenable to wetting by H<sub>2</sub>O nanodroplets.</p>\",\"PeriodicalId\":782,\"journal\":{\"name\":\"Surface Engineering and Applied Electrochemistry\",\"volume\":\"60 1\",\"pages\":\"50 - 57\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering and Applied Electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068375524010101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375524010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
摘要
摘要 本文利用分子动力学模拟对铂金表面在纳米水滴作用下的润湿性进行了全面研究。为了评估固液界面的润湿性,利用大规模原子/分子大规模并行模拟器分析了原子和表面之间的接触角随时间、温度和能量的变化。值得注意的是,研究显示接触角发生了显著变化,在令人难以置信的2到200 fs的短暂时间内,接触角从突出的147.158°变为更有利的123.65°。这种动态变化凸显了铂金表面润湿性的显著改善,并揭示了固液相互作用的动力学原理。结果还显示,在相同的温度范围内,环境温度从 320 K 降至 285.5 K,液滴温度从 2.43 K 升至 170 K,总能量也随之降低。这项研究强调了润湿性的渐进性,揭示了随着时间的增加,接触角会持续减小。这从一个角度说明了铂表面是如何越来越容易被 H2O 纳米液滴润湿的。
Study of Wettability Behavior of Water Nanodroplets on Platinum Surface by Molecular Dynamics Simulation
The present paper deals with a comprehensive investigation of the wettability of the platinum surface when subjected to water nanodroplets using molecular dynamics simulation. To evaluate the wettability of a solid-liquid interface, the contact angle was analyzed varied with respect to time, temperature, and energy between the atoms and the surfaces using large-scale atomic/molecular massively parallel simulator. It is worth noting here that the research reveals a significant change in the contact angle which goes from a prominent 147.158° to a more favorable 123.65° in an incredibly brief period of 2 to 200 fs. That dynamic change highlights the platinum surface significant improvement in wettability and sheds light on the kinetics of solid-liquid interactions. The result also shows that the ambient temperature reduced from 320 to 285.5 K, and the droplet temperature increased from 2.43 to 170 K in the same temperature range along with a decrease in the total energy. This study emphasizes the progressive aspect of wettability by revealing that, as time increases, the contact angle consistently reduces. This shows the perspective on how the platinum surface becomes increasingly amenable to wetting by H2O nanodroplets.
期刊介绍:
Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.