Guo-hui Li, Yan Zhang, Cheng Zhou, Ji-wei Xu, Chang-jin Zhu, Chen Ni, Zhong-yang Huo, Qi-gen Dai, Ke Xu
{"title":"高产、氮利用率高的水稻品种的农艺学和生理学特征:两个近交系之间的比较","authors":"Guo-hui Li, Yan Zhang, Cheng Zhou, Ji-wei Xu, Chang-jin Zhu, Chen Ni, Zhong-yang Huo, Qi-gen Dai, Ke Xu","doi":"10.1002/fes3.539","DOIUrl":null,"url":null,"abstract":"<p>Increasing the application of nitrogen fertilizer is the main approach to increase rice production, but it also brings problems of environmental pollution and increases agricultural production costs. Cultivating high-yielding and high nitrogen use efficiency (NUE) rice varieties is an important approach to solving this problem. The rice varieties carrying <i>dep1</i> (<i>dense and erect panicle 1</i>) have both high grain yield and high NUE. However, their plant traits have not been fully explored. In this study, two rice near-isogenic lines carrying <i>dep1</i> (NIL-<i>DEP1</i> and NIL-<i>dep1</i>) were grown in paddy fields under 0, 120 and 270 kg N ha<sup>−1</sup>. We analyzed agronomic traits of panicle type, plant type, leaves and roots, and physiological traits of vascular bundles, photosynthetic rate and carbon and nitrogen transport. The results showed that the NIL-<i>dep1</i> exhibited higher grain yield and NUE than NIL-<i>DEP1</i>, mainly due to the higher spikelet number per panicle, grain filling percentage and dry matter production. Compared with NIL-<i>DEP1</i>, NIL-<i>dep1</i> had improved flag leaf morpho–physiological traits, including erect flag leaves, greater leaf thickness and specific leaf weight, higher root dry weight, root length, root volume and root surface area, and a better canopy structure, as reflected by a lower light interception percent and canopy extinction coefficient, leading to better photosynthetic performance and dry matter production. In addition, NIL-<i>dep1</i> exhibited better vascular bundle traits of peduncle and enhanced dry matter, stem carbon and nitrogen translocation during grain filling. In conclusion, NIL-<i>dep1</i> had high grain yield and NUE by improved agronomic and physiological traits and increasing carbon and nitrogen translocation during grain filling. These traits mentioned above could be used to select and breed high grain yield with high NUE rice varieties.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":"13 2","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.539","citationCount":"0","resultStr":"{\"title\":\"Agronomic and physiological characteristics of high yield and nitrogen use efficient varieties of rice: Comparison between two near-isogenic lines\",\"authors\":\"Guo-hui Li, Yan Zhang, Cheng Zhou, Ji-wei Xu, Chang-jin Zhu, Chen Ni, Zhong-yang Huo, Qi-gen Dai, Ke Xu\",\"doi\":\"10.1002/fes3.539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Increasing the application of nitrogen fertilizer is the main approach to increase rice production, but it also brings problems of environmental pollution and increases agricultural production costs. Cultivating high-yielding and high nitrogen use efficiency (NUE) rice varieties is an important approach to solving this problem. The rice varieties carrying <i>dep1</i> (<i>dense and erect panicle 1</i>) have both high grain yield and high NUE. However, their plant traits have not been fully explored. In this study, two rice near-isogenic lines carrying <i>dep1</i> (NIL-<i>DEP1</i> and NIL-<i>dep1</i>) were grown in paddy fields under 0, 120 and 270 kg N ha<sup>−1</sup>. We analyzed agronomic traits of panicle type, plant type, leaves and roots, and physiological traits of vascular bundles, photosynthetic rate and carbon and nitrogen transport. The results showed that the NIL-<i>dep1</i> exhibited higher grain yield and NUE than NIL-<i>DEP1</i>, mainly due to the higher spikelet number per panicle, grain filling percentage and dry matter production. Compared with NIL-<i>DEP1</i>, NIL-<i>dep1</i> had improved flag leaf morpho–physiological traits, including erect flag leaves, greater leaf thickness and specific leaf weight, higher root dry weight, root length, root volume and root surface area, and a better canopy structure, as reflected by a lower light interception percent and canopy extinction coefficient, leading to better photosynthetic performance and dry matter production. In addition, NIL-<i>dep1</i> exhibited better vascular bundle traits of peduncle and enhanced dry matter, stem carbon and nitrogen translocation during grain filling. In conclusion, NIL-<i>dep1</i> had high grain yield and NUE by improved agronomic and physiological traits and increasing carbon and nitrogen translocation during grain filling. These traits mentioned above could be used to select and breed high grain yield with high NUE rice varieties.</p>\",\"PeriodicalId\":54283,\"journal\":{\"name\":\"Food and Energy Security\",\"volume\":\"13 2\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.539\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Energy Security\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fes3.539\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Energy Security","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fes3.539","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Agronomic and physiological characteristics of high yield and nitrogen use efficient varieties of rice: Comparison between two near-isogenic lines
Increasing the application of nitrogen fertilizer is the main approach to increase rice production, but it also brings problems of environmental pollution and increases agricultural production costs. Cultivating high-yielding and high nitrogen use efficiency (NUE) rice varieties is an important approach to solving this problem. The rice varieties carrying dep1 (dense and erect panicle 1) have both high grain yield and high NUE. However, their plant traits have not been fully explored. In this study, two rice near-isogenic lines carrying dep1 (NIL-DEP1 and NIL-dep1) were grown in paddy fields under 0, 120 and 270 kg N ha−1. We analyzed agronomic traits of panicle type, plant type, leaves and roots, and physiological traits of vascular bundles, photosynthetic rate and carbon and nitrogen transport. The results showed that the NIL-dep1 exhibited higher grain yield and NUE than NIL-DEP1, mainly due to the higher spikelet number per panicle, grain filling percentage and dry matter production. Compared with NIL-DEP1, NIL-dep1 had improved flag leaf morpho–physiological traits, including erect flag leaves, greater leaf thickness and specific leaf weight, higher root dry weight, root length, root volume and root surface area, and a better canopy structure, as reflected by a lower light interception percent and canopy extinction coefficient, leading to better photosynthetic performance and dry matter production. In addition, NIL-dep1 exhibited better vascular bundle traits of peduncle and enhanced dry matter, stem carbon and nitrogen translocation during grain filling. In conclusion, NIL-dep1 had high grain yield and NUE by improved agronomic and physiological traits and increasing carbon and nitrogen translocation during grain filling. These traits mentioned above could be used to select and breed high grain yield with high NUE rice varieties.
期刊介绍:
Food and Energy Security seeks to publish high quality and high impact original research on agricultural crop and forest productivity to improve food and energy security. It actively seeks submissions from emerging countries with expanding agricultural research communities. Papers from China, other parts of Asia, India and South America are particularly welcome. The Editorial Board, headed by Editor-in-Chief Professor Martin Parry, is determined to make FES the leading publication in its sector and will be aiming for a top-ranking impact factor.
Primary research articles should report hypothesis driven investigations that provide new insights into mechanisms and processes that determine productivity and properties for exploitation. Review articles are welcome but they must be critical in approach and provide particularly novel and far reaching insights.
Food and Energy Security offers authors a forum for the discussion of the most important advances in this field and promotes an integrative approach of scientific disciplines. Papers must contribute substantially to the advancement of knowledge.
Examples of areas covered in Food and Energy Security include:
• Agronomy
• Biotechnological Approaches
• Breeding & Genetics
• Climate Change
• Quality and Composition
• Food Crops and Bioenergy Feedstocks
• Developmental, Physiology and Biochemistry
• Functional Genomics
• Molecular Biology
• Pest and Disease Management
• Post Harvest Biology
• Soil Science
• Systems Biology