{"title":"二聚黄酮类化合物的抗菌活性","authors":"Inês Lopes, Carla Campos, Rui Medeiros, Fátima Cerqueira","doi":"10.3390/compounds4020011","DOIUrl":null,"url":null,"abstract":"Distributed throughout the environment are various microorganisms such as bacteria, fungi, parasites, and viruses. Although many are part of the human microbiome, many are pathogenic and cause infections ranging from mild to severe. In recent years, the identification of multidrug-resistant microorganisms has become a serious public health problem. The resulting infections call into question the therapeutic capacity of health systems and lead to approximately 70,000 deaths annually worldwide. The progressive resistance to antibiotics and antifungals has been a major challenge for the medical and pharmaceutical community, requiring the search for new compounds with antimicrobial properties. Several studies have demonstrated the potential of natural and synthesized flavonoids, especially the dimers of these molecules. In this review are presented many examples of dimeric flavonoids that have demonstrated antimicrobial activity against viruses, like influenza and Human Immunodeficiency Virus (HIV), protozoal infections, such as Leishmaniasis and Malaria, fungal infections by Candida albicans and Cryptococcus neoformans, and bacterial infections caused, for example, by Staphylococcus aureus and Escherichia coli. In the pursuit to find potential safe agents for therapy in microbial infections, natural dimeric flavonoids are an option not only for the antimicrobial activity, but also for the low toxicity usually associated with these compounds when compared to classic antimicrobials.","PeriodicalId":10621,"journal":{"name":"Compounds","volume":" 33","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antimicrobial Activity of Dimeric Flavonoids\",\"authors\":\"Inês Lopes, Carla Campos, Rui Medeiros, Fátima Cerqueira\",\"doi\":\"10.3390/compounds4020011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed throughout the environment are various microorganisms such as bacteria, fungi, parasites, and viruses. Although many are part of the human microbiome, many are pathogenic and cause infections ranging from mild to severe. In recent years, the identification of multidrug-resistant microorganisms has become a serious public health problem. The resulting infections call into question the therapeutic capacity of health systems and lead to approximately 70,000 deaths annually worldwide. The progressive resistance to antibiotics and antifungals has been a major challenge for the medical and pharmaceutical community, requiring the search for new compounds with antimicrobial properties. Several studies have demonstrated the potential of natural and synthesized flavonoids, especially the dimers of these molecules. In this review are presented many examples of dimeric flavonoids that have demonstrated antimicrobial activity against viruses, like influenza and Human Immunodeficiency Virus (HIV), protozoal infections, such as Leishmaniasis and Malaria, fungal infections by Candida albicans and Cryptococcus neoformans, and bacterial infections caused, for example, by Staphylococcus aureus and Escherichia coli. In the pursuit to find potential safe agents for therapy in microbial infections, natural dimeric flavonoids are an option not only for the antimicrobial activity, but also for the low toxicity usually associated with these compounds when compared to classic antimicrobials.\",\"PeriodicalId\":10621,\"journal\":{\"name\":\"Compounds\",\"volume\":\" 33\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compounds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/compounds4020011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compounds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/compounds4020011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributed throughout the environment are various microorganisms such as bacteria, fungi, parasites, and viruses. Although many are part of the human microbiome, many are pathogenic and cause infections ranging from mild to severe. In recent years, the identification of multidrug-resistant microorganisms has become a serious public health problem. The resulting infections call into question the therapeutic capacity of health systems and lead to approximately 70,000 deaths annually worldwide. The progressive resistance to antibiotics and antifungals has been a major challenge for the medical and pharmaceutical community, requiring the search for new compounds with antimicrobial properties. Several studies have demonstrated the potential of natural and synthesized flavonoids, especially the dimers of these molecules. In this review are presented many examples of dimeric flavonoids that have demonstrated antimicrobial activity against viruses, like influenza and Human Immunodeficiency Virus (HIV), protozoal infections, such as Leishmaniasis and Malaria, fungal infections by Candida albicans and Cryptococcus neoformans, and bacterial infections caused, for example, by Staphylococcus aureus and Escherichia coli. In the pursuit to find potential safe agents for therapy in microbial infections, natural dimeric flavonoids are an option not only for the antimicrobial activity, but also for the low toxicity usually associated with these compounds when compared to classic antimicrobials.